Abstract - A study on magnetic properties of permanent magnet Nd-Fe-(Ti, B, Mo)-N alloys - Sung Yong AN Department of Physics, Graduate School, Kookmin University Seoul. Korea (supervised by Professor Chul Sung Kim) Tetragonal ThMn₁₂-type Nd-Fe-(Ti, B, Mo)-N alloys have been studied with X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometer(VSM). Nd-Fe-(Ti, B, Mo)-N alloys were prepared by an arc-melting method under an argon gas atmosphere(DAIA ACM-01). Nitrogenation had been performed by annealing the alloy powders in a pure N₂ flow at 500 °C for 15 min. The crystal structure of Nd-Fe-(Ti, B, Mo)-N alloys was found to be a tetragonal structure with lattice constants (a_o =8.638 Å and c_o =4.819 Å). Mössbauer spectroscopy measurements were performed at various temperatures ranging from 13 to 800 K and magnetic properties were measured 77 to 1000 K by using a VSM. Curie and Debye temperatures of NdFe_{10.7}Ti_{1.3} were determined to be T_c =590 ± 5 K and Θ =374 ± 5 K, respectively, and those of NdFe_{10.7}Ti_{1.3}N_{δ} are T_c=743 ± 5 K and Θ =501 ± 5 K. The result of Mössbauer spectrocopy measurements was clearly shown that nitrogenation enhanced Curie and Debye temperatures of Nd-Fe-(Ti, B, Mo)-N alloys remarkably. Mössbauer spectra of Nd-Fe-(Ti, B, Mo)-N alloys were fitted with six subspectra of Fe sites in the structures(8i₁, 8i₂, 8j₂, 8j₁,8f and α -Fe). Magnetic hyperfine fields for the Fe sites decreased in the order, H_{hf}(8i)> H_{hf}(8j)> H_{hf}(8f).