Abstracts of
HANARO Workshop 2003

- 이용자 중심의 열린 하나로 -

• 일 시 : 2003. 5. 16(금) 08:30~18:30
• 장 소 : 한국원자력연구소 국제원자력교육훈련센터(INTEC)
• 주 최 : 한국원자력연구소
• 후 원 : 과학기술부, 한국원자력학회, 한국물리학회
 한국분석과학회, 대한금속재료학회, 대한핵의학회

한국원자력연구소
Korea Atomic Energy Research Institute
CoAl\textsubscript{x}Fe\textsubscript{2-x}O\textsubscript{4} (X=0.1, 0.2) \textsubscript{a} 월절의 교환상호작용 및 중성자 회절 연구

EXCHANGE INTERACTION AND NEUTRON DIFFRACTION ON CoAl\textsubscript{x}Fe\textsubscript{2-x}O\textsubscript{4} (X=0.1, 0.2)

김상현(sikim@phys.kookmin.ac.kr)	extsuperscript{1}, 봉보라	extsuperscript{1}, 김철성	extsuperscript{1}, 최응남	extsuperscript{2}, 이정희	extsuperscript{2}

1국민대학교, 2한국원자력연구소

요 약 문

Magnetic and structural properties of CoAl\textsubscript{x}Fe\textsubscript{2-x}O\textsubscript{4} with x=0.1, 0.2 have been investigated with thermal analysis (TG-DTA), x-ray, neutron diffraction, Mössbauer spectroscopy and magnetization measurements. Neutron diffraction measurements of CoAl\textsubscript{0.1}Fe\textsubscript{1.9}O\textsubscript{4} were obtained at various temperature ranges from 10 to 816 K. Neutron diffraction at 10 K revealed a cubic spinel space group Fd\textsubscript{3}m with ferrimagnetic long range order. Mössbauer spectra were collected from 4 to 820 K. It is found that Debye temperatures of tetrahedral(A) and octahedral(B) site for CoAl\textsubscript{0.1}Fe\textsubscript{1.9}O\textsubscript{4} are \(\theta_A = 746 \)\textdegree, \(\theta_B = 204 \) K, respectively, and for CoAl\textsubscript{0.2}Fe\textsubscript{1.8}O\textsubscript{4}, \(\theta_A = 709 \), \(\theta_B = 197 \) K, respectively. The temperature dependence of the magnetic hyperfine field in \(^{57}\text{Fe} \) nuclei at the A and B sites was analyzed on the Néel type molecular field theory of magnetism. For the sample CoAl\textsubscript{0.1}Fe\textsubscript{1.9}O\textsubscript{4}, the A–B and A–A superexchange interaction were antiferromagnetic with the strengths of \(J_{A-B} = -23.8 \) and \(J_{A-A} = -18.0 \) \(k_B \), respectively, while the B-B superexchange interaction was ferromagnetic with a strength of \(J_{B-B} = 5.6 \) \(k_B \). Also for the sample CoAl\textsubscript{0.2}Fe\textsubscript{1.8}O\textsubscript{4}, the strengths of the A–B, A–A, and B–B interaction were \(J_{A-B} = -21.3 \), \(J_{A-A} = -19.6 \), and \(J_{B-B} = 4.8 \) \(k_B \), respectively. The changes of exchange interactions with Al substitution are interpreted on the basis of cation distributions and bond lengths. It is interpreted that a noticeable strength of the A–A interaction are closely related to the covalency effects and neutron diffractions accord with these results.