International Symposium on Research Reactor and Neutron Science

In Commemoration of the 10th Anniversary of HANARO
Superexchange interaction behaviors in Cu-doped for chromium based sulphur spinel

Bae Soon Son¹, Sam Jin Kim¹, In-Bo Shim¹, Kun-Pyo Hong², and Chul Sung Kim¹

¹Department of Physics, Kookmin University, Seoul 136-702, Korea
cskim@phys.kookmin.ac.kr
²Korea Atomic Energy Research Institute
150 Deokjin-dong, Yuseong-gu, Daejeon 305-353, Korea

Abstract

The superexchange interaction behaviors in spinel compounds Fe₁₋ₓCuₓCr₂S₄ (0.0 ≤ x ≤ 0.5) with magnetic semiconductor are investigated. Rietveld refinement of x-ray diffraction and Mössbauer spectra was concluded that the samples are cubic spinel. The neutron diffractions were measured from 10 K to room temperature. Neutron diffraction on Fe₁₋ₓCuₓCr₂S₄ (0.0 ≤ x ≤ 0.5) above 10 K shows that there is no crystalllographic distortion and reveal antiferromagnetic ordering. Mössbauer spectra identify that Fe ions occupy tetrahedral sites, the Cr ions occupy octahedral sites with a +3 valence in the Fe₁₋ₓCuₓCr₂S₄ (0.0 ≤ x ≤ 0.5). The charge state of Fe ions are ferrous (Fe²⁺) for the x=0.1, while Fe ions are ferric (Fe³⁺) for the x=0.5.

Keywords: Exchange interaction, neutron diffraction, Mössbauer spectroscopy

1. Introduction

Studies of sulphur spinel compounds have suggested that the conduction mechanism in these materials may not be the double exchange of carriers [1]. V. Fritsch et al. claimed a triple exchange model in copper doped sulphur spinel [2]. Mössbauer studies on FeCr₂S₄ have been reported already by many workers [3-5]. According to the octahedral (B) site preference of Cr³⁺, it is believed that the Mössbauer spectra of FeCr₂S₄ arise from the tetrahedral (A) site of the Fe²⁺ spectra. Samples of Fe₁₋ₓCuₓCr₂S₄ (x ≤ 0.5) have been studied extensively. Loitgering et al. developed a monovalence model of Cu⁺ ion [6], while Goodenough postulated divalent Cu²⁺ for the concentration range 0.5 < x ≤ 1.0 [7]. Recently, Palmer et al. [8] and V. Fritsch et al. [2] reported the triple exchange model and suggested the coexistence of the iron ions Fe²⁺ and Fe³⁺ in the tetrahedral sites. Therefore, it is essential to determine the valence state of iron ions in various sulphur spinel compounds to understand the underlying mechanism properly. Therefore, it is necessary to examine the cation
distribution of the various compounds in the sulphur spinel.

2. Experimental

Synthesis of the sample was accomplished by the direct reaction of the high-purity elements Fe, Cr, Cu, and S in an evacuated quartz tube. The crystal structure of the sample was examined by x-ray diffractometer with Cu Kα radiation and neutron diffractometer at Korea atomic energy research institute reactor HANARO HRPD. Magnetoresistance (MR) and magnetization were measured with van der pauw method and vibrating sample magnetometer (VSM), respectively. The Mössbauer spectra were recorded using the conventional spectrometer of the electromechanical type with a 57Co source in a rhodium matrix.

3. Results and Discussion

The x-ray diffraction (XRD) patterns for samples reveal spinel structure. The crystal structure at room temperature is determined by the Rietveld method. It is found that the space group is $Fd\bar{3}m$ and resulting lattice parameter for $x=0.1$ and 0.5 are $a_0=9.9880$ Å and $a_0=9.9220$ Å, respectively. Figure 1 shows the results of neutron diffraction patterns for $\text{Fe}_{1-x}\text{Cu}_x\text{Cr}_2\text{S}_4$ ($0.0 \leq x \leq 0.5$) at 10 K. We cannot find any other different position of magnetic superstructure peaks other than the nuclear peaks at 10 K temperature, in figure 1. Specifically, all magnetic peaks are overlapped on nuclear peaks. Therefore, it is concluded that the intersublattice superexchange interaction of Fe(A)-Cr(B) is antiferromagnetic, while intrasublattice superexchange interaction of Fe(A)-Fe(A) and Cr(B)-Cr(B) is ferromagnetic, respectively. In order to clarify and determine the state of Fe ions in the samples, the Mössbauer spectra were measured. From the Mössbauer results, it is determined that charge state of the iron ions in the samples $x=0.1$ and 0.5 are ferrous and ferric, respectively. The iron and copper ion for the $x=0.5$ show the ferric (Fe^{3+}) and mono valence (Cu^+) characters. Neither the triple exchange model nor the double exchange model can explain these systems.

![Fig. 1 The neutron diffractions for the $\text{Fe}_{1-x}\text{Cu}_x\text{Cr}_2\text{S}_4$ ($0.0 \leq x \leq 0.5$) at 10 K](image)

4. Conclusion

In summary the crystal structures of $\text{Fe}_{1-x}\text{Cu}_x\text{Cr}_2\text{S}_4$ ($x=0.1$, 0.5) are found to be a cubic spinel by Rietveld refinement of XRD and neutron diffraction. The cation distribution is determined by Mössbauer spectra, which reveals that the Fe ions are occupied to the tetrahedral site and Cr ions are occupied to the octahedral site and $\text{Fe}_{1-x}\text{Cu}_x\text{Cr}_2\text{S}_4$ ($x=0.1$, 0.5) belongs to a spinel type. The valence state of the Fe ions for the $x=0.1$ and $x=0.5$ are confirmed to be Fe^{2+}...
and Fe$^{3+}$, respectively, through Mössbauer spectra and neutron diffraction.

Acknowledgements

This work was supported by KOSEF (R02-2003-000-10046-0).

References