한국물리학회

회의

BULLETIN OF THE KOREAN PHYSICAL SOCIETY

2006년 봄 학술논문 발표회 및 제82회 정기총회

휘닉스파크
2006. 4. 20(목) ~ 21(금)

사단법인 한국물리학회
The Korean Physical Society www.kps.or.kr
Fe 도핑 된 TiO2의 진공-후열처리에 따른 자기적 특성 연구 최 강통, 김철성, 이희민, 심인보(국민대학교 물리학과) 최근 산화물 물음은자성반도체 물질에서 산소결합의 역할이 중요하게 대두되면서, 이러한 산소결합이 상온강자성 특성을 더욱 향상시킬 수 있다는 결과들이 보고되고 있다. 본 연구에서는 Fe 도핑 된 TiO2에서 산소결합이 자성특성에 미치는 영향을 알아보기 위하여, 공기 중에서 열처리한 시료와 이를 진공에서 후 열처리한 시료를 제조하여 그 특성을 비교하였다. Fe가 1% 도핑 된 시료의 경우 진공-열처리 전과 후의 상온에서의 자기모멘트 값은 각각 0.031 μB/Fe와 0.078 μB/Fe로 진공-열처리 후 약 2배 정도 증가하였다. 이에 대한 보다 미세적인 자기적 거동을 살펴보기 위하여 4.2 K 부터 상온까지 여러 온도 구간에 걸쳐 폐스바우어 스펙트럼을 취하였다. 공기 중에서 열처리한 시료의 경우 TiO2 내에서의 Fe는 모두 Fe3+로 존재하였고, 폐스바우어 스펙트럼은 doublet(paramagnetic phase)과 sextet (magnetically ordered phase)으로 이루어져 있었다. 이때 상온에서의 작은 자기모멘트 값은 Fe의 일부가 상자성 형태로 존재하기 때문에로 판단되어진다. 진공-후열처리 한 시료의 경우 환원효과로 인하여 Fe의 일부는 Fe2+로 존재함이 확인되었고, 이때 Fe2+는 매우 큰 전기사중극자 분열치(4.2 K에서 약 2.31 mm/s)를 가지는 doublet 형태로 관측되었다. Fe3+와 Fe2+의 존재 비율은 각각 1:1로 분석되었고, Fe3+의 doublet은 온도 변화에 따라 거의 변화가 없었던 반면 Fe2+의 doublet은 강한 온도 의존성을 가진 Fe2+의 doublet에 의한 영향으로 판단되어진다.