한나로 심포지움
2006
HANARO SYMPOSIUM

http://hanarosymposium.kaeri.re.kr

일시: 2006. 5. 10 (수) 9:00AM~6:00PM
장소: 한국원자력연구소 국제원자력교육훈련센터 (INTEC)
주관: 과학기술부, 한국원자력연구소
 후원: 한국원자력학회, 한국물리학회, 대한핵의학회, 대한금속·제료학회
 한국방사성물질처분협회, 한국비파괴검사학회, 대한방사선방사학회
CRYSTALLOGRAPHIC AND MAGNETIC PROPERTIES OF KFeO$_2$

Seung Je Moon, In-Bo Shim, Sung Back Kim, and Chul Sung Kim
Department of Physics, Kookmin University, Seoul 136-702, Korea
E-mail: cskim@phys.kookmin.ac.kr

1. Introduction

The compounds of the alkali and iron materials [AFeO$_2$: A = Li, Na, K] have been studied because of the possibility as low-cost substitutes for cathode materials in rechargeable lithium batteries [1-5]. Though potassium iron oxide was known as the material with the highest Néel temperatures among iron-oxide compounds [6-7], there have been very few reports on the KFeO$_2$. Since this material is of very unstable nature due to hygroscopic property of potassium, it is very difficult to get single phase KFeO$_2$.

In this work, we have successfully synthesized single phase of KFeO$_2$, and then studied the magnetic and crystallographic properties.

2. Methods and Results

KFeO$_2$ powders were fabricated by the ball-mill method. Potassium carbonate (K$_2$CO$_3$) and iron oxide (Fe$_2$O$_3$) were used as starting materials. Weighted potassium carbonate and iron oxide [K$_2$CO$_3$:Fe$_2$O$_3$=1:2.1 at%] were mixed for 48 h by planetary ball-mill. The rotation speed was 350 rpm and the charge ratio (powder-to-zirconium ball) were 1:3. Milling time was 48 h and afterward the compounds were calcined at 1173 K for 10 h. In order to obtain homogeneous material, it was necessary to grind the samples after first firing and press the powder into pellets before secondary heat treatment at same temperature for 20 h. Finally, single phase KFeO$_2$ was successfully obtained, and the all sample preparation for measurements were taken in glove-box (Ar gas based) because of hygroscopic property of potassium.

The crystal structure of the sample was characterized by x-ray diffraction with Cu-K$_\alpha$ radiation and neutron diffraction at Korea Atomic Energy Research Institute Reactor HANARO HRPD (high resolution powder diffractometer, $\lambda =1.8348$ Å). Magnetic properties were measured using a vibrating sample magnetometer (VSM) and Mössbauer spectroscopy with a 40 mCi $^{57}$Co source in a Rh matrix.

The x-ray diffraction patterns for KFeO$_2$ sample show a single phase, without any segregation of second phase within the instrumental resolution limit. In Fig. 1, we represent the observed and calculated peak profile, and Bragg position of the patterns for KFeO$_2$. Crystal structure of the sample at room temperature is determined to be an orthorhombic structure of space group Pbca with its lattice constants $a_0=5.557$, $b_0=11.227$, and $c_0=15.890$ Å, respectively, by Rietveld refinement and then the final Bragg factors $R_B$ was under 5 %.

We were able to know that there are two kinds of K atoms, two kinds of Fe atoms, and four kinds of O behaviors and have magnetization of 0.11, 0.12 emu/g. Each Fe atom has four Fe neighbours with antiparallel moments coupled to it through the oxygen atoms.

Fig. 2 shows Mössbauer spectra at various temperature. Mössbauer spectra are composed of one six-line hyperfine pattern in which the Fe$^{3+}$ ions are one kind of tetrahedral site in ordered phase. Using a least-squares computer program, one set of six Lorentzian lines were fitted to the Mössbauer spectrum below the magnetic ordering temperature, under the well-known restraints which are valid when the quadrupole interaction is much weaker than the magnetic hyperfine interaction. Table.1 presents the magnetic hyperfine fields, electric quadrupole splitting, and isomer shifts at some typical temperatures. The isomer shift at room temperature is found to be 0.09 mm/s corresponding to highly covalent ferric state. This analysis result is in agreement with the assumption that the magnetic moments of two kinds of Fe atoms are equal.

Fig. 3 shows neutron diffraction patterns of KFeO$_2$ at 4.2 K. We cannot find any other different position magnetic peak and structure peaks, aside from KFeO$_2$. Neutron diffraction refinement at 4.2 K revealed the orthorhombic structure of antiferromagnetic ordering in which each Fe atom has four Fe neighbours having antiparallel moments coupled to it through the oxygen atoms.
3. Conclusion

Well-crystallized ordered KFeO$_2$ powders have been successfully prepared by ball-method. The isomer shift values at 4.2 K, 77 K, 130 K and 297 K for one sextet patterns are 0.19, 0.17, 0.14 and 0.09 mm/s relative to the Fe metal, respectively, which are consistent with the high-spin Fe$^{3+}$ charge states.

REFERENCES


