한국자기학회 2007년도 정기총회
동계학술연구발표회 및 스피 트로닉스와 나노물리에 관한 국제심포지움

논문개요집

- 일시: 2007. 12. 6(목) ~ 8(토)
- 장소: 순천대학교 70주년 기념관
- 주최: 한국자기학회
 포항공대 스피트로닉스 연구센터
 KIST 스피트로닉스 연구팀
- 후원: 한국학술진흥재단
 한국과학기술단체총연합회

Digests of the International Symposium on Spintronics and Nano-physics & KMS 2007 Winter Conference
Electron Spin Science Center, POSTECH / Spintronics Research Team, KIST
The Korean Magnetics Society
Ni$_{0.7}$Fe$_{0.3}$Ga$_2$S$_4$의 퇴스바우어 분광학 연구

명보라*, 김상진, 김철성
국립대학교 물리학과

1. 서론
Chalcogenide 물질들은 초거대 자기저항(colossal magnetoresistance: CMR) 효과, 금속-절연체 전이(metal-insulator transition)와 구조 전이(Structural phase transition) 등의 현상, 그리고 반도체적인 특성으로 다양한 연구가 수행되어지고 있다. 더욱이 이 물질들 중 일부는 극저온에서 전형적인 스피인-동결(spin-freezing)현상이 아닌, 기하학적으로 스피인-프러스트레이션(spin-frustration) 현상이 나타나 세계적으로 주목을 받고 있다.[1,2] 최근 2005년 Science에 스피인-프러스트레이션(spin-frustration) 현상을 가진 NiGa$_2$S$_4$ 물질이 논문에 게재되었는데, 이 물질은 삼각형으로 배열된 결정구조가 자기스핀의 정렬을 방해하고, 이 때 스피인은 요동(fluctuation)과 정렬을 프러스트레이션(frustration) 현상이 나타나며 이 현상을 스피인-액체(Spin Liquid)라고 명명하고 있다.[3] 또한 극저온에서 전기시용극자모멘트의 값이 매우 커 구조적인 뒤틀림 현상을 나타내고 있다.[4] NiGa$_2$S$_4$ 물질에 비슷한 이온인 Zn를 치환하여 미시적인 자기적 성질이 연구되었으며, Zn를 치환함에 따라 Neel 온도가 감소하였고, 전통적인 자기 스피인 정열이 무너지는 즉, 스피인-네마틱(spin-nematic) 상태가 봉인될 수 있어야 한다.[5,6] 본 연구에서는 Ni 자리에 자전 이온 Fe를 치환한 Ni$_{0.7}$Fe$_{0.3}$Ga$_2$S$_4$를 합성하여, 결정학적 특성과 자기적 성질변화를 연구하여 스피인-상관관계 (spin-correlation)를 이해하고자 한다.

2. 실험방법
Ni$_{0.7}$Fe$_{0.3}$Ga$_2$S$_4$는 99.995% 이상의 고순도 Ni, Fe, Ga, S 분말을 정확한 당량비로 계산하여 고전공에서 퇴스바우어결정합성법으로 합성하였다. 1차 열처리에서 급속한 온도 상승은 황의 증기압 상승시켜 석영관 폭발의 원인이 되므로, 이를 방지하기 위하여 0.4 °C/min의 속도로 온도를 서서히 증가시키며 1차열처리를 수행하였다. 낙각시에는 S 분말의 추출을 막기 위해 2일에 걸쳐 0.2 °C/min의 속도로 서서히 낙각하였다. 이후 시료의 균질성을 고려하여 마노에 긴게 분쇄한 후 유압기를 사용하여 pellet으로 만들고 석영관 내에 진공을 불입한 후 2차 열처리를 수행하였다. 위의 열처리 과정에서 퇴스바우어 석영판 외벽에 고순도 절소 가스를 흐려 시료 내부로 산소가 확산되지는 것을 방지하였다. 시료의 결정구조를 확인하기 위해 CuKa선을 사용하는 Philips 사 X-선 회절기를 이용하였으며, 퇴스바우어 스펙트럼은 57Co 단일선을 사용하는 전기통신학적 저관도형 퇴스바우어 분광기로 4.2 K부터 상온까지 취하였다.

3. 실험결과 및 고찰
Fig.1은 상온에서는 Ni$_{0.7}$Fe$_{0.3}$Ga$_2$S$_4$의 X-선 회절도를 나타내고 있으며, 분석 결과 단일상의 시료가 만들어졌음을 확인할 수 있었다. X-선 회절선 회절강도의 분석을 위하여 Rietveld 방법에 의한 Fullprof 컴퓨터 분석프로그램을 이용하였다. 분석 결과 결정구조는 공간그룹이 P-3m1인 trigonal로 확인할 수 있었다. 격자상수는 $a_0 = 3.640$ Å, $c_0 = 12.020$ Å이고, 양이온, 음이온 위치 파라미터는 각각 Ni(0,0,1/2), Fe(0,0,1/2), Ga(1/3,2/3,0.208), S(1/3,2/3,0.868), S(1/3,2/3,0.400)로 결정되었다. 반면 Ni$_{1-x}$Fe$_x$Ga$_2$S$_4$ (x=0, 1)의 격자상수는 각각 $a_0 = 3.625$ Å, $c_0 = 11.996$ Å, $a_0 = 3.654$ Å, $c_0 = 12.056$ Å인데, Fe2의 이온반경의 Ni$^{2+}$보다 크기 때문에 Fe$^{2+}$가 치환됨에 따라 격자상수가 증가됨을 알 수 있
였다. Fig. 2는 극저온 4.2K와 상온에 대한 Mössbauer 스펙트럼을 각각 나타내고 있으며, 여러 온도에 걸쳐 분석하여 초미세 자기장 \(H_m \), 전기차중극자분열계 \(\Delta E_q \), 이제질체 이동값 \(\delta \) 를 결정할 수 있었다. 상온에서의 Mössbauer 스펙트럼 분석 결과 이제질체 이동값은 0.516 mm/s로 분석되었고 이는 철의 이온상태가 +2가임을 나타내고 있다.

극저온 4.2 K에서는 초미세 자기장과 전기차중극자 상호작용의 영향에 의하여 8개의 Lorentzian으로 분석하였으며, \(H_m = 120.7 \) KOe, \(\Delta E_q = 1/2e^2qQ(1+1/3\delta^2) \) = 1.96 mm/s, \(\delta = 0.655 \) mm/s로 결정되었다. 4.2 K의 피스바우어 흡수선은 매우 비대칭적이고 선폭이 넓은 것으로 Jahn-Teller 효과에 기인한 것으로 해석되어진다.\([7]\) 또한 \(Ni_{1-x}Fe_xGa_2S_4(x=0.01, 1) \)의 초미세 자기장의 값은 각각 \(H_m = 112.7 \) KOe, \(H_m = 128.2493 \) KOe 이므로, Fe\(^{3+}\)의 치환값이 증가함에 따라 초미세자기장 값을 증가함을 알 수 있다.

![Fig. 1. X-ray diffraction of Ni_{0.7}Fe_{0.3}Ga_2S_4 at room temperature.](image1)

![Fig. 2. The Mössbauer spectra for at room temperature.](image2)

4. 참고문헌