한국자기학회
자성 및 자성재료 국제학술대회
International Symposium on New Trends in Magnetism and Magnetic Materials

논문개요집

일시 2011. 12. 5(월) ~ 12. 7(수)
장소 라마다프라자 제주호텔
주최 한국자기학회
후원 한국과학기술단체총연합회

Digests of the International Symposium on New Trends in Magnetism and Magnetic Materials
The Korean Magnetics Society
고온 열분해법으로 제조한 MnFe$_2$O$_4$
나노입자의 자기적 특성 연구

윤성욱*, 김철희, 심인보
국립대학교 물리학과

1. 서 론

페라이트는 수수한 전자기적 특성으로 인해 많은 연구와 산업적 응용이 되어왔으나, 그 중에서 스페셜 구조의 나노 페라이트 입자들은 크기에 따른 특이한 물리적, 화학적인 특성으로 미디어 기록장치, 약물 전달체, 바이오 센서, MRI 조영제 등에 많이 응용되고 있다[1]. 최근에는 나노입자의 합성뿐만 아니라 나노입자의 형태 조절에 대해서도 연구가 많이 진행되고 있는 추세이다.

본 연구에서는 고온 열분해법(hot-injection polyol process)[2]에서 precursor의 주사시간(injection time rate)을 변화하여 MnFe$_2$O$_4$ 나노입자의 형태를 제어하고 그 입자의 결정구조 및 자기적 특성에 대한 연구를 수행하였다.

2. 실험방법

MnFe$_2$O$_4$ 나노입자는 고온 열분해법을 이용하여 제조하였다. 일차적으로 oleic acid, oleylamine, 1,2-tetradecanediol을 용매(benzyl ether)에 넣고 용해시킨 후 전공분위기에 120 ℃로 삶온하여 1시간 동안 탈수화(dehydrate)하였다. MnFe$_2$O$_4$의 반응물질로서 manganese (II) acetylacetonate와 iron (III) acetylacetonate를 용매(benzyl ether)에 용해시켰다. 탈수화된 용액을 Ar gas 분위기에서 10 ℃/min으로 290 ℃까지 증온하였고 여기에 반응물질을 다양한 주사시간에 따라 주사를 하고 2시간 동안 290 ℃를 유지하여 반응시간 후 상온까지 자연 방각하였다. 반응이 끝난 물질은 에탄올과 력산을 이용하여 세척하고 건조하였다. 결정학적 구조를 확인하기 위해서 x-선 회절측정기(x-ray diffractometer; XRD) 측정을 수행하였고 제조된 나노입자의 크기 및 형태를 확인하기 위하여 전계방식 주사전자현미경(field emission scanning electron microscope; FE-SEM)과 투과전자현미경(transmission electron microscope; TEM) 측정을 수행하였다. 그리고 자기적인 특성을 확인하기 위하여 진동 시료형 자하율 측정기(vibrating sample magnetometer; VSM) 및 투스바우어 분광계(Mössbauer spectroscopy) 측정을 수행하였다.

3. 실험결과 및 고찰

MnFe$_2$O$_4$ 나노입자의 결정구조를 확인하기 위하여 XRD 측정을 수행한 결과 Fig. 1에 나타내는 것과 같이 단일상의 임방 스페셜 구조의 나노입자가 합성되었음을 확인할 수 있었고 반응물질의 주사를 0.5분으로 빠르게 진행했을 경우 보다 60분 동안 천천히 했을 경우, 안정적인 반응이 이루어짐에 따라 결정성이 향상되는 것을 확인할 수 있었다. 제조된 나노입자의 크기 및 형태를 확인하기 위하여 FE-SEM 및 TEM 측정을 수행한 결과 반응물질의 주사를 빠르게 했을 경우 수나나미터 크기의 구 형태의 나노입자가 형성되었고 천천히 했을 경우 수십 나나미터를 갖는 다면체 형태의 나노입자가 형성 된 것을 확인 할 수 있었고 이는 Fig. 2에 나타내었다. 자기적인 특성을 알아보기 위해 VSM을 측정한 결과 반응물질의 주사를 천천히 했을 경우 더 큰 포화자화 값을 갖는 것을 확인할 수 있었는데 이는 나노입자의 크기 증가와 결정성 향상에 따른 것이라 판단되어진다. Mössbauer spectroscopy 측정 결과 반응물질의 주사를 빠르게 했을 경우 나노입자의 크기가 상당히 작게 형성되어, 이에 따른 relaxation 현상에 의하여 2-set sextet이 아닌 선폭이 넓은 2-line형태의 스펙트럼으로 측정되었다. 이러한 결과는 앞서 제시한 XRD 및 TEM 측정결과와 잘 부합되는 것을 알 수 있었다.
Fig. 1. XRD patterns of various MnFe₂O₄ nanoparticles.

Fig. 2. FE-SEM image of various MnFe₂O₄ nanoparticles.

4. 참고문헌
