International Symposium on Magnetism and Magnetic Materials 2018

ABSTRACTS

Date November 21- 23 (Wed.-Fri.), 2018

Place Hotel Nongshim, Busan, Korea

Organized by The Korean Magnetics Society

Sponsored by The Korean Federation of Science and Technology Societies (KOFST)

"This work was supported by the Korean Federation of Science and Technology Societies(KOFST) Grant funded by the Korean Government."

SO02	Poster	Magnetized [CoSiB/Pt] Multilayer Electrodes Pradeep Raj Sharma*, Young Gwang Kim, Tae Wan Kim, Hwayong Noh	183
SO03	Poster	Modification of interfacial Dzyaloshinskii-Moriya interaction in Ta/W/CoFeB/MgO films	184
SO04	Poster	Y. Roussigné, M. Belmeguenai, S. M. Chérif, A. S. Samardak and Young Keun Kim Annealing temperature and sputtering power dependence of interfacial energies in magnetic heterostructures Woo-Yeong Kim*, Hyung Keun Gweon, Sang Ho Lim, Kyung-Jin Lee and Chun-Yeol Y	
SO05	Poster	Observation of the anisotropic magnetoresistance in a ferromagnet-topological insulator junction	187
SO06	Poster	Coercivity field control using magnetron sputtering energy	188
SO07	Poster	Magnetic properties of NaFe _{0.9} Mn _{0.1} PO ₄ by Mössbauer spectroscopy	189
SO08	Poster	Mössbauer studies of ⁵⁷ Fe doped LiMnPO ₄ by external magnetic field ············ Hyunkyung Choi [*] , Chul Sung Kim	190
SO09	Poster	Changed Characteristic of Perpendicular Magnetic Anisotropy by Normal Metal Mingu Kim*, Jiho Kim, Changjin Yun, Jinwon Seo and Kungwon Rhie	191
SO10	Poster	SMR based spin Hall measurement technique for in-plane magnetization Jiho Kim*, Changjin Yun, Mingu Kim, Dongseuk Kim and Kungwon Rhie	192
O Sessi	on ST[S _i	pin transfer torque for magnetic memory]	
ST01	Poster	Interface Engineering in Heavy metal/Ferromagnetic Heterostructures for Spin-Orbit Torque	193
ST02	Poster	Asymmetric Hall effect induced by canted state in epitaxial Co/Pt	
ST03	Poster	Proton and Ion Beam Radiation Effects on Magnetic Tunnel Junction	195
O Sessi	on JR[Ju	unior Session]	
JRO1	Poster	Measurement Equipment of Superconducting Magnetic Levitation Force ······· Young Hwan Lee*, Ji U Kim, Ye Bin Jo, Jah Ho Lee†, Chan Joong Kim†	197
JRO2	Poster	Magnetic Levitation Force of YBCO superconductors at 77 K	198

Magnetic properties of NaFe_{0.9}Mn_{0.1}PO₄ by Mössbauer spectroscopy

Jae Yeon Seo*, Hyunkyung Choi, Chul Sung Kim Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

Maricite-type NaFePO₄ is promising for use as the cathode in Na-ion batteries because it is advantages of environmental friendliness and low-cost. However, it has low electrochemical conductivity and poor performance than other materials. Mn-based phosphate has higher redox reduction potential than Fe-based phosphate. Therefore, NaMnPO₄ can obtain higher potential than NaFePO₄. In this paper, we have substituted other transition-metal ions such as Mn ions for Fe sites and investigated the hyperfine electromagnetic interaction of Fe ions. The crystal structure and magnetic properties of the as prepared materials were studied by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. The NaFe_{0.9}Mn_{0.1}PO₄ sample was prepared using the ball mill method. Structure refinement of NaFe_{0.9}Mn_{0.1}PO₄ was analyzed using Fullprof program. The crystal structure of NaFe_{0.9}Mn_{0.1}PO₄ sample was found to be orthorhombic with space group of *Pmnb*. Lattice parameters of NaFe_{0.9}Mn_{0.1}PO₄ are as follows: $a_0 = 6.866$ Å, $b_0 = 8.988$ Å, $c_0 = 5.047$ Å, and V = 311.544 Å³. The zero-field-cooled (ZFC) and field-cooled (FC) curves were examined by VSM at 100 Oe from 4.2 to 295 K. The magnetic susceptibility curves showed that antiferromagnetic behavior below Néel temperature ($T_N = 14$ K). We have investigated the magnetic hyperfine interaction using Mössbauer spectroscopy at various temperatures between 4.2 and 295 K. At 4.2 K, the magnetic hyperfine field (H_{hf}), the electric quadruple splitting (ΔE_Q), and isomer shift (δ) are found to be $H_{\rm hf}=166.09$ kOe, $\Delta E_Q=2.18$ mm/s, and $\delta=166.09$ kOe, $\Delta E_Q=1.18$ mm/s, and $\Delta E_Q=1.18$ 1.24 mm/s. The room-temperature Mössbauer spectrum showed one-doublet with measured values of $\Delta E_0 = 2.20$ mm/s and $\delta = 1.08$ mm/s. We confirmed that $T_{\rm N}$ of NaFe_{0.9}Mn_{0.1}PO₄ are lower than those of pure NaFePO₄ ($T_{\rm N}$ = 15 K). This is due to the Fe-O-Mn superexchange interaction being lower than that of the Fe-O-Fe link.

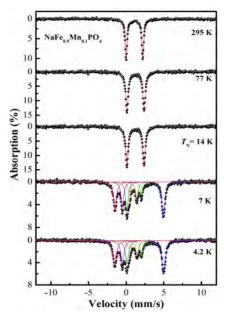


Fig. 1. Mössbauer spectra of NaFe_{0.9}Mn_{0.1}PO₄ at various temperature range from 4.2 to 295 K.