INTERNATIONAL SYMPOSIUM ON MAGNETISM AND MAGNETIC MATERIALS 2018

ABSTRACTS

Date: November 21-23 (Wed.-Fri.), 2018
Place: Hotel Nongshim, Busan, Korea
Organized by: The Korean Magnetics Society
Sponsored by: The Korean Federation of Science and Technology Societies (KOFST)

“This work was supported by the Korean Federation of Science and Technology Societies (KOFST) Grant funded by the Korean Government.”
SO02 Poster Electrical Spin Injection and Detection in Copper with Perpendicularly Magnetized [CoSiB/Pt] Multilayer Electrodes .. 183
Pradeep Raj Sharma*, Young Gwang Kim, Tae Wan Kim, Hwayong Noh

SO03 Poster Modification of interfacial Dzyaloshinskii-Moriya interaction in Ta/W/CoFeB/MgO films .. 184
Taehyun Kim*, In Ho Cha, Yong Jin Kim, Gyu Won Kim, A. A. Stashkevich, Y. Roussigné, M. Belmeguenai, S. M. Chérif, A. S. Samardak and Young Keun Kim

SO04 Poster Annealing temperature and sputtering power dependence of interfacial energies in magnetic heterostructures .. 186
Woo-Yeong Kim*, Hyung Keun Gweon, Sang Ho Lim, Kyung-Jin Lee and Chun-Yeol You

SO05 Poster Observation of the anisotropic magnetoresistance in a ferromagnet-topological insulator junction .. 187
Sung Jong Kim*, Youn Ho Park, Chaun Jang, Andrzej Hruban, and Hyun Cheol Koo

SO06 Poster Coercivity field control using magnetron sputtering energy .. 188
Changjin Yun*, Jiho Kim, Kungwon Rhie, Dongseuk Kim, and Chanyong Hwang

SO07 Poster Magnetic properties of NaFe_{0.9}Mn_{0.1}PO_4 by Mössbauer spectroscopy .. 189
Jae Yeon Seo*, Hyunkyung Choi, Chul Sung Kim

SO08 Poster Mössbauer studies of ^{57}Fe doped LiMnPO_4 by external magnetic field .. 190
Hyunkyung Choi*, Chul Sung Kim

SO09 Poster Changed Characteristic of Perpendicular Magnetic Anisotropy by Normal Metal .. 191
Mingu Kim*, Jiho Kim, Changjin Yun, Jinwon Seo and Kungwon Rhie

SO10 Poster SMR based spin Hall measurement technique for in-plane magnetization 192
Jiho Kim*, Changjin Yun, Mingu Kim, Dongseuk Kim and Kungwon Rhie

❖ Session ST[Spin transfer torque for magnetic memory]

ST01 Poster Interface Engineering in Heavy metal/Ferromagnetic Heterostructures for Spin-Orbit Torque .. 193
Jungmin Park*, Jung-Woo Yoo and Seung-Young Park†

ST02 Poster Asymmetric Hall effect induced by canted state in epitaxial Co/Pt 194
Jeongchun Ryu*, Can Onur Avci, Makoto Kohda, Geoffrey S. D. Beach and Junsaku Nitta

ST03 Poster Proton and Ion Beam Radiation Effects on Magnetic Tunnel Junction 195
June-Young Park*, Jeong-Mok Kim, Jeongchun Ryu, Jimin Jeong, Byong-Guk Park

❖ Session JR[Junior Session]

JR01 Poster Measurement Equipment of Superconducting Magnetic Levitation Force 197
Young Hwan Lee*, Ji U Kim, Ye Bin Jo, Jah Ho Lee†, Chan Joong Kim†

JR02 Poster Magnetic Levitation Force of YBCO superconductors at 77 K 198
Ji U Kim*, Ye Bin Jo, Young Hwan Lee, Jah Ho Lee†, Chan Joong Kim†
Magnetic properties of NaFe$_{0.9}$Mn$_{0.1}$PO$_4$
by Mössbauer spectroscopy

Jae Yeon Seo*, Hyunkyung Choi, Chul Sung Kim
Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

Maricite-type NaFePO$_4$ is promising for use as the cathode in Na-ion batteries because it is advantageous of environmental friendliness and low-cost. However, it has low electrochemical conductivity and poor performance than other materials. Mn-based phosphate has higher redox reduction potential than Fe-based phosphate. Therefore, NaMnPO$_4$ can obtain higher potential than NaFePO$_4$. In this paper, we have substituted other transition-metal ions such as Mn ions for Fe sites and investigated the hyperfine electromagnetic interaction of Fe ions. The crystal structure and magnetic properties of the as prepared materials were studied by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. The NaFe$_{0.9}$Mn$_{0.1}$PO$_4$ sample was prepared using the ball mill method. Structure refinement of NaFe$_{0.9}$Mn$_{0.1}$PO$_4$ was analyzed using Fullprof program. The crystal structure of NaFe$_{0.9}$Mn$_{0.1}$PO$_4$ sample was found to be orthorhombic with space group of Pnmb. Lattice parameters of NaFe$_{0.9}$Mn$_{0.1}$PO$_4$ are as follows: $a_0 = 6.866$ Å, $b_0 = 8.988$ Å, $c_0 = 5.047$ Å, and $V = 311.544$ Å3. The zero-field-cooled (ZFC) and field-cooled (FC) curves were examined by VSM at 100 Oe from 4.2 to 295 K. The magnetic susceptibility curves showed that antiferromagnetic behavior below Néel temperature ($T_N = 14$ K). We have investigated the magnetic hyperfine interaction using Mössbauer spectroscopy at various temperatures between 4.2 and 295 K. At 4.2 K, the magnetic hyperfine field (H_{hf}), the electric quadruple splitting (ΔE_Q), and isomer shift (δ) are found to be $H_{hf} = 166.09$ kOe, $\Delta E_Q = 2.18$ mm/s, and $\delta = 1.24$ mm/s. The room-temperature Mössbauer spectrum showed one-doublet with measured values of $\Delta E_Q = 2.20$ mm/s and $\delta = 1.08$ mm/s. We confirmed that T_N of NaFe$_{0.9}$Mn$_{0.1}$PO$_4$ are lower than those of pure NaFePO$_4$ ($T_N = 15$ K). This is due to the Fe-O-Mn superexchange interaction being lower than that of the Fe-O-Fe link.

Fig. 1. Mössbauer spectra of NaFe$_{0.9}$Mn$_{0.1}$PO$_4$ at various temperature range from 4.2 to 295 K.