
ICM 2003

ROMa, staly . july 27 - August 1 . 2003

Incorporating

The Symposium on Strongly Correlated Electron Systems

abstracts

1Y-pm-32——- EXCHANGE INTERACTION AND NEUTRON DIFFRACTION ON CoAl_xFe_{2.x}O₄ (X=0.1, 0.2)

Sam Jin Kim; Bo Ra Myoung,; Chul Sung Kim Department of Physics, Kookmin University, Seoul 136-702

Magnetic and structural properties of CoAl_xFe_{2-x}O₄ with x=0.1, 0.2 have been investigated with thermal analysis (TG-DTA), x-ray, neutron diffraction. Mössbauer spectroscopy and magnetization measurements. Neutron diffraction measurements of CoAl_{0.1}Fe_{1.9}O₄ were obtained at various temperature ranges from 10 to 816 K. Neutron diffraction at 10 K revealed a cubic spinel space group Fd3m with ferrimagnetic long range order. Mössbauer spectra were collected from 4 to 820 K. It is found that Debye temperatures of tetrahedral(A) and octahedral(B) site for $CoAl_{0.1}Fe_{1.9}O_4$ are $\Theta_A = 746$, $\Theta_B = 204$, respectively, and for $CoAl_{0.2}Fe_{1.8}O_4$, $\Theta_A = 709$, $\Theta_B = 197$, respectively. The temperature dependence of the magnetic hyperfine field in ⁵⁷Fe nuclei at the A and B sites was analyzed on the Néel type molecular field theory of magnetism. For the sample CoAlo, Fe, O4, the A-B and A-A superexchange interaction were antiferromagnetic with the strengths of $J_{AB} = -23.3$ and $J_{AA} = -$ 18.0 k_B , respectively, while the B-B superexchange interaction was ferromagnetic with a strength of $J_{B-B} = 5.6 k_B$. Also for the sample $CoAl_{0.2}Fe_{1.8}O_4$, the strengths of the A-B, A-A, and B-B interaction were $J_{A-B} = -$ 21.3, $J_{A-A} = -19.6$, and $J_{B-B} = 4.8 k_B$, respectively. The changes of exchange interactions with Al substitution are interpreted on the basis of cation distributions and bond lengths. It is interpreted that a noticeable strength of the A-A interaction are closely related to the covalency effects and neutron diffractions accord with these results.