
ICAME 2005

SEPTEMBER 5-9, 2005 MONTPELLIER FRANCE

Programme and Abstracts

International Conference on the Applications of the Mössbauer Effect

LE CORUM Conference Centre

Esplanade Charles de Gaulle Montpellier, France

MÖSSBAUER AND OPTICAL INVESTIGATION OF Co_{3-x}Fe_xO₄ THIN FILMS GROWN BY SOL-GEL PROCESS

Kwang Joo Kim¹, Hee Kyung Kim¹, Young Ran Park¹, Geun Young Ahn², Chul Sung Kim², Jae Yun Park³

Department of Physics, Konkuk University, Seoul 143-701, South Korea

Department of Physics, Kookmin University, Seoul 136-702, South Korea

Department of Materials Science and Engineering, University of Incheon, Incheon 402-749, South Korea

Crystallographic transformation, magnetic, and optical properties of Co_{3-x}Fe_xO₄ thin films have been investigated by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), spectroscopic ellipsometry (SE), and conversion electron Mössbauer spectroscopy (CEMS). Co_{3-x}Fe_xO₄ samples were prepared as thin films on Si(100) substrates with thickness of about 1 µm by a sol-gel method employing spin-coating process.

As shown Figure 1, XRD spectra exhibit the crystallographic transformation of normal to inverse spinel phase with Fe composition in the Co_{3-x}Fe_xO₄ films. It is seen that the same phase as in Co₃O₄ is maintained up to x = 0.55 with gradual increase of the cubic lattice constant with x. The XRD data also indicate the coexistence of two phases between x = 0.76 and 0.93. The result of magnetic-property measurements by VSM on the Co3-xFexO4 films revealed a strong ferrimagnetic behavior above x = 0.76. Optical measurments on the Co_{3-x}Fe_xO₄ films by SE revealed that the imaginary part of the dielectric function of Co_{3-x}Fe_xO₄ in the 1.5 – 4 eV photon-energy range evolves as the Fe composition changes. As the Fe composition increases, the 2.8-eV absorption, due to p-d charge-transfer (CT) transition between O and octahedral Co³⁺ ion,[1] is reduced in intensity. The 1.65-eV structure, due to d-d CT transition between octahedral Co³⁺ and tetrahedral Co²⁺ ions also suffers from reduction in strength as x increases. These results indicate that the Fe3+ ions substitute octahedral Co³⁺ sites mostly for low Fe compositions. The result of CEMS measurements on the Co_{3-x}Fe_xO₄ films revealed that Fe has Fe²⁺ as well as Fe³⁺ ionic valence at high Fe compositions. CEMS spectrum of Co_{2.07}Fe_{0.93}O₄ film is exhibited in Fig. 2. It is found that the Fe3+ cations occupy both tetrahedral and octahedral sites as x increases.

* This work was supported by the financial support of Konkuk University made in the program year of 2004.

[1] K. J. Kim, Y. R. Park, D. H. Hyun, and S. H. Lee, J. Appl. Phys. **96** (2004) 1975.

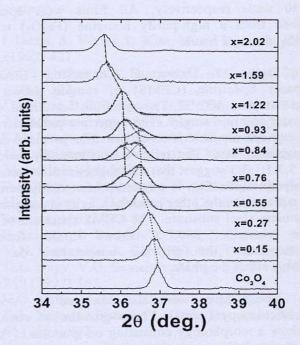


Figure 1. XRD (311) peak of Co_{3-x}Fe_xO₄ films.



Figure 2. CEMS spectrum of Co_{2.07}Fe_{0.93}O₄ thin film at room temperature.