ISAMMA2007 The 1st International Symposium on Advanced Magnetic Materials May 28-June 1, 2007, Jeju, Korea ## Organized by Research Center for Advanced Magnetic Materials The Korean Magnetics Society ## Sponsored by Korea Science and Engineering Foundation Korean Federation of Science and Technology Societies Research Center for Spin Dynamics and Spin-Wave Devices **SA07** ## Carrier Doping Dependence of the T_c in Double Perovskite Sr_2 FeMoO₆ J. Kim¹, C. S. Kim², and B. W. Lee¹* Department of Physics, Hankuk University of Foreign Studies, Yongin, kyungki, 449-791, Korea Department of Physics, Kookmin University, Seoul 136-702, Korea *Corresponding author: bwlee@hufs.ac.kr. Phone: +82 31 330 4362. Fax: +82 31 330 4566 We have studied effects of the electron doping on the magnetic phase transition in double perovskites Sr_{2×}A_κFeMoO₆ (A= Ca and La). Polycrystalline samples were prepared by standard solid-state reaction. X-ray diffraction patterns reveal that samples are single-phase with tetragonal L/mmm symmetry. In SCFMO. the *T*, decreases from 377 K for x=0 to 365 K for x=0.1 with Ca doping. However, the T_c of SLFMO increases from 377 K for x=0 to 390 K for x=0.1 with La doping. Since the ionic radii of Ca³⁺ ion (1.34 Å) and La³⁺ ion (1.36 Å) are almost same, considering ionic size effect, we cannot expect any difference in T_c between A=Ca and La with increasing x. Contrary to the case for A=Ca, the substitution of La³⁺ for Sr^{2+} introduces electrons in the electronic systems, which changes the valence state of Fe/Mo ions. Hall effect measurement shows the normal Hall coefficient for A=La is negative, so that the increase of T_c with La³⁺ doping originates from electron doping effects.