FUROPE International Magnetics Conference

ADVANCE PROGRAM

Madrid, Spain May 4th - 8th 2008

Relaxation Effect of NiCr₁₈In_{0.1}Fe_{0.1}O₄ with Magnetic Anisotropy.

S. Park, D. Choi, C. Kim

Department of Physics, Kookmin University, Seoul, South Korea

Introduction : Many researchers were conduct do researches on the chromite materials of spinel structure because of multiferroic effects.[1-3] The NiCr_{1.9}Fe_{0.1}O₄ is a ferrimagnet cubic normal spinel at room temperature, in which Ni²⁺ ions occupy the tetrahedral-sites and Cr³⁺ and Fe³⁺ ions occupy the octahedral-sites.[2] Also in the NiCr_{1.9}Fe_{0.1}O₄ is a cubic to tetragonal(c/a<1) transition for the Fe concentration x = 0.1 around 230 K.[4]

In this paper, we have studied the impact on magnetic properties of the $NiCr_{1.9}Fe_{0.1}O_4$ as a function of the nonmagnetic Indium(In) ion doping by using an x-ray diffraction and magnetization curve measurements and Mössbauer spectroscopy.

Experiments : Polycrystalline samples of the NiCr_{1,9-x}In_xFe_{0,1}O₄(x=0.0, 0.1) were prepared by annealing 24 hour in atmosphere at 1200 °C with a solid state reaction. The x-ray diffraction patterns of the samples at room temperature were obtained with Cu- $K\alpha$ radiation by an x-ray diffractometer (X'PERT). The temperature dependent moment curve was measured by a vibrating sample magnetometer (VSM). The hyperfine magnetic relaxation effects on magnetic anisotropy of samples were evaluated to analysis with temperature dependence of Mössbauer spectra. Mössbauer spectra were measured that a Mössbauer spectrometer of electromechanical type was used in the constant-acceleration mode with a ⁵⁷Co single-line source in a rhodium(Rh) matrix.

Results : The crystalline structure of NiCr_{1.8}In_{0.1}Fe_{0.1}O₄ sample at room temperature was determined to be a cubic spinel of Fd-3m with a lattice constant $a_0 = 8.342$ Å at 295 K by Rietveld refinement, while the Bragg R_B and R_F factors were 3.17 and 2.47 % (Figure 1). Figure 2 shows the temperature dependence of the zero field cooled(ZFC) and field coold(FC) magnetization curves for the NiCr_{1.9-x}In_xFe_{0.1}O₄(x=0.0, 0.1) under external field of 100 Oe. The magnetic Néel temperature(T_N) is determined by comparing the $d\sigma/dT$ curve of the ZFC measurements with the Mössbauer spectra analysis. As the NiCr_{1.8}In_{0.1}Fe_{0.1}O₄, the T_N is determined to be 130 K. Figure 3 shows Mössbauer spectra of NiCr_{1.8}In_{0.1}Fe_{0.1}O₄ at various temperature ranges. The Mössbauer spectra show two magnetic phases with the two different magnetic spin direction sites of the Cr³⁺ ion state.[1,5] Mössbauer absorption lines are sharp below 77 K and become broader with increasing temperature. The asymmetric intensities are different from those of the powder pattern 3:2:1. In order to explain the Mössbauer line broadering and 1,6 and 3,4 line-width difference due to the magnetic anisotropic relaxation effect, we use the Blume-Tjon[6] expression. It is noted that the relaxation effect increases rapidly as the temperature approaches the Néel temperature, 130 K.

[1] A. B. Sushkov, O. Tchernyshyov, W. ratcliff II, S. W. Cheong and H. D. Drew, Phys. Rev. Lett. 94, 137202 (2005).

- [2] S.-I. Park and C. S. Kim, J. Appl. Phys. 101, 09N511 (2007).
- [3] S.-W. Cheong, M. Mostovoy, Nature 6, 13 (2007).
- [4] R. J. Arnott, A. Wold and D. B. Rogers, J. Phys. Chem. Solids 25, 161 (1964).
- [5] K. Tomiyasu, I. Kagomiya, J. Phys. Soc. Japan, 73, 2539 (2004).
- [6] M. Blume, and J. A Tjon, Phys. Rev., 165, 4469 (1968).

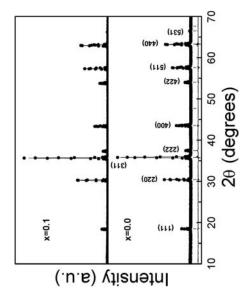


Fig. 1. The x-ray diffraction patterns of $NiCr_{1,9-x}In_xFe_{0,1}O_4$ at room temperature.

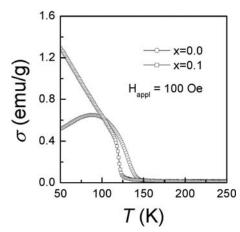


Fig. 2. The temperature dependence of zero field cooled curves $NiCr_{1.9x}In_xFe_{0.1}O_4$.

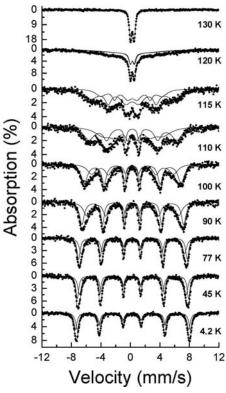


Fig. 3. The Mössbauer spectra of NiCr $_{1.9}$ In $_{0.1}$ Fe $_{0.1}$ O $_4$ at various temperature ranges.

INTERMAG 2008 976