
EUROPE International Magnetics Conference

ADVANCE PROGRAM

EW-04

Mössbauer studies of ⁵⁷Fe-doped in LiCoPO₄ at low temperatures.

S. Moon, C. Kim

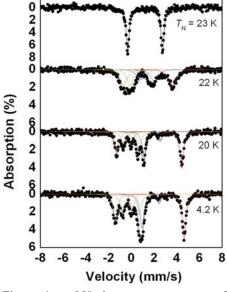
Department of Physics, Kookmin University, Seoul, South Korea

Introduction

Since the magnetoelectric (ME) effect was observed in Lithium-orthosphates, LiMPO₄ (M=Transition metal) have been extensively investigated for information storage and electronic, magnetic and optical switches [1-3]. Also, the high lithium- ionic conductivity has been studied already as a high potential cathode material by using in secondary Li-ion rechargeable battery [4]. Recently, the observation of ferrotoroidic (FTO) domains in LiCoPO₄ was reported by Bas. Van Aken et al [5]. They claimed that the ferrotoroidic system has asymmetric structure by migration of Co^{2+} ions in antiferromagnetic (AFM) structure with rotation of the spins. The studies of neutron scattering demonstrated the magnetic properties of LiCoPO₄ which was related between 2D and 3D magnetic systems [2, 5]. These structures exhibit a strong linear magnetoelectric (ME) effect. AFM ordering reduces the symmetry from mmm to mmm', and weak ferromagnetism along y axis reduces the symmetry from mmm' to 2'mm', therefore, finally, it has two AFM and two FTO domains in LiCoPO₄ [5].

From these complex magnetic structures, $LiCoPO_4$ show the various anomaly effects. Therefore, it is essential to determine the unusual magnetic properties of $LiCoPO_4$ in low temperatures for properly understand the mechanism. We present crystallographic and magnetic properties of $LiCo_{0.99}^{57}Fe_{0.01}PO_4(LCFPO)$ using the Mössbauer spectroscopy and the x-ray diffraction (XRD) Experiments

The polycrystalline sample of (LCFPO) was made by using a direct reaction. Lithium carbonate, ammonium dihydrogen phosphate, cobalt oxide, and iron metal (57 Fe) were mixed in stoichiometric ratios and sealed in evacuated quartz tubes. The temperature was slowly raised up to 700 °C over a period of 1 day. The crystal structure of the sample was examined by using an X- ray diffractometer with Cu- K α radiation (λ =1.5406 Å) and was analyzed by using a Rietveld refinement. The Mössbauer spectra were recorded using a conventional spectrometer of the electromechanically type with a 57 Co source in a rhodium matrix.


Results and discussion

X-ray diffraction pattern for LCFPO showed a pure olivine single phase. The crystals structure was determined to be an orthorhombic with space group *P*nma. The determined lattice constants a_0 , b_0 , and, c_0 are 10.241Å, 5.924Å, and 4.698 Å, respectively.

The Mössbauer spectra of LCFPO at various temperatures ranging from 4.2 to 300 K are shown in Fig. 1. We have analyzed the Mössbauer spectra by using the full Hamiltonian. The Mössbauer spectrum shows a large asymmetric and distorted line broadening at 4.2 K. The magnetic hyperfine field ($H_{\rm hf}$) and the quadrupole splitting (ΔE_Q) at 4.2 K were fitted and yielded the following results: $H_{\rm hf} = 127$ kOe, $\theta = 16^{\circ}$, $\phi = 0^{\circ}$, $\eta = 0.95$, $\Delta E_Q = (1/2)e^2qQ[1+(1/3)\eta^2]^{1/2} = 0.36$ mm/s, and R = 3.0. Here, η is the asymmetric parameter, and R is the ratio of the electric quadrupole interaction to the magnetic dipole interaction. It is noticeable that the magnitude of R is greater than 1 below $T_{\rm N}$. This result indicates that the electric quadrupole interaction is larger than the magnetic dipole interaction in the below $T_{\rm N}$ region. Generally, the $H_{\rm hf}$ has a maximum value at 0 K and decreases with increasing temperature. In Fig. 2, we observe that the $H_{\rm hf}$ has a maximum at 9 K. The unusual reduction of $H_{\rm hf}$ below 9 K can be explained in terms of the temperature dependence of the cancellation effect between the orbital current field term and the Fermi contact term in $H_{\rm hf}$. The magnitude quadrupole shift at below $T_{\rm N}$ was caused by large crystal field due to the asymmetric structure through the rotation of the spins. From the analysis of Mössbauer spectra, we suggest that the asymmetric structure of $LiCoPO_4$ is closely related to the elevation of ME effect.

[1] I. Kornev, Phys. Rev. B, 62, 12247 (2000).

- [2] D. Vaknin, Phys. Rev. Lett., 92, 207201 (2004).
- [3] M. Mostovoy, Phys. Rev. Lett., 96, 067601 (2006).
- [4] S. B. Lang, IEEE. T. Dielect. El. In., 7, 466 (2000).
- [5] B. B. V. Aken, Nature, 449, 702 (2007).

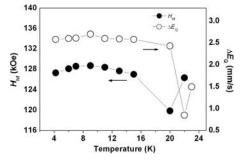


Fig. 2. The Temperature dependence of magnetic hyperfine field $(H_{\rm hf})$ and the electric quadrupole shift $(\Delta E_{\rm Q})$ at below $T_{\rm N}$ for LiCo_{0.99}⁵⁷Fe_{0.01}PO₄. $(T_{\rm N}$ (23 K)).

Fig. 1. Mössbauer spectra of $LiCo_{0.99}^{57}Fe_{0.01}PO_4$ at various temperatures.