

20th

International
Symposium on Metastable,
Amorphous and
Nanostructured Materials

Torino, June 30 – July 5, 2013

6P4-27 In K. Lee, H.S. Kim, Bo W. Lee, C.S. Kim Magnetic and structural phase transition properties of the lithium ion battery materials $Li_{1-x}[Fe_{1-y}M_y]PO_4$ (x=0, 1; M=Co, Ni)

6P4-27 Thu July 4

Magnetic and structural phase transition properties of the lithium ion battery materials Li_{1-x}[Fe_{1-y}M_y]PO₄ (x=0, 1; M=Co, Ni)

In Kyu Lee^a, Hee Seung Kim^a, Bo Wha Lee^b, Chul Sung Kim^a

^a Department of Physics, Kookmin University, Seoul, Republic of Korea
 ^b Department of Physics, Hankuk University of Foreign studies, Yongin, Kyungki, Republic of Korea

Lithium transition-metal phospho-olivines, LiMPO₄ (M=Fe, Co, Ni) compounds occupies an important position in the large-scale energy-storage systems (ESSs) as positive electrode materials for rechargeable lithium-ion cells [1]. In this work, the study on structural and magnetic phase transition of Li_{1x}Fe_{1/3}Co_{1/3}Ni_{1/3}PO₄ (x=0, 1) solid-solution system carried out using x-ray diffraction (XRD), magnetization measurement and Mössbauer experiment. LiFe_{1/3}Co_{1/3}Ni_{1/3}PO₄ and its fully deintercalated Fe_{1/3}Co_{1/3}Ni_{1/3}PO₄ compounds were prepared by the vacuum-sealed solid-state reaction and chemical-oxidation process with reaction of LiFe_{1/3}Co_{1/3}Ni_{1/3}PO₄ and NO₂BF₄ in acetonitrile. From the analyzed XRD patterns, the intercalated LiFe_{1/3}Co_{1/3}Ni_{1/3}PO₄ compound crystallized in orthorhombic with the Pnma space group, which is same structure with deintercalated Fe_{1/3}Co_{1/3}Ni_{1/3}PO₄. The lattice parameter of both materials were determined to be a_0 = 10.1994 Å, b_0 = 5.9396 Å, c_0 = 4.6957 Å and V= 284.47 Å³ for x=0; a_0 = 10.0498 Å, b_0 = 5.8648 Å, c_0 = 4.7333 Å and V= 278.98 Å³ for x=1 which can be originated by structural phase transition with Li-ion diffusion. Temperature dependent magnetization curves of the Li_{1-x}Fe_{1/3}Co_{1/3}Ni_{1/3}PO₄ samples exhibits enhancement of antiferromagnetic ordering due to the valence transition of transition metal ions with the increase of the Nèel temperature (T_N) from 35 K for x=0 to 51 K for x=1. The room temperature Mössbauer spectrum of the LiFe_{1/3}Co_{1/3}Ni_{1/3}PO₄ exhibits one Fe²⁺ doublet with the measured value of δ =1.10 mm/s, whereas fully deintercalated Fe_{1/3}Co_{1/3}Ni_{1/3}PO₄ shows the one Fe³⁺ (δ = 0.32 mm/s) doublet induced by the lithium ion diffusion and valence transition. Mössbauer spectra below the T_N analyzed with eight Lorentzian which indicates that different antiferromagnetic ordering with different T_N = 35 K for x= 0 and 51 K for x= 1. The measured value of H_{hf} = 120 kOe, ΔE_Q = 3.05 mm/s, δ = 1.22 mm/s for x= 0 and H_{hf} = 505 kOe, $\Delta E_0 = 1.51$ mm/s, $\delta = 0.43$ mm/s for x = 1 at 4.2 K, respectively. From these results, we concluded that the magnetic phase transition originated from the change of the magnetic super exchange-interaction between each Fe²⁺/Fe³⁺ ions in Li_{1-x}Fe_{1/3}Co_{1/3}Ni_{1/3}PO₄.

^[1] H. Gwon, D.-H. Seo, S.-W. Kim, J. Kim, and K. Kang, Adv. Funct. Mater. 19, 1 (2009).