

■ S4F - P004 METAL-INSULATOR TRANSITION IN THE PLASMA-TREATED STRUO₃ THIN FILM Fran Kurnia¹, Nguyen Thach², Jinhee Kim², Chul Sung

Kim³, and Chang Uk Jung¹.

¹Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791. South Korea. ²Korea Research Institute of Standards and

Science, Daejeon 305-340, South Korea. 3Department of Physics,

Kookmin University, Seoul 136-702, South Korea.

METAL-INSULATOR TRANSITION IN THE PLASMA-TREATED STRUO3 THIN FILM

Fran Kurnia¹, Nguyen Thach², Jinhee Kim², Chul Sung Kim³, and Chang Uk Jung¹.

¹Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, South Korea.

²Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea.

SrRuO₃ is a conductive magnetic oxide, which shows paramagnetic at room temperature and ferromagnetic below 160 K. Metal-insulator transition in SrRuO₃ epitaxial thin films has been attracted considerable attention because of its important technological issues.^[1] Recently, metal-insulator transition in plasma-treated SrRuO₃ thin films could be explained in terms of Anderson transition due to the oxygen deficiency.^[2] The Hall resistivity of our SrRuO₃ films contained the anomalous Hall contribution. The sign changes at certain temperature indicated that the Berry-phase mechanism could be act as the main anomalous Hall effect in SrRuO₃.^[3] According to these results, we propose that the transport properties of SrRuO₃ thin films were significantly affected by plasma treatment.

Keywords: SrRuO3, Thin Film, Plasma-treatment

References:

[1] Y. J. Chang, et.al., Phys. Rev. Lett. 103, 057201 (2009).

[2] F. Kurnia, et.al., J. Phys. Soc. Jpn. 82, 013706 (2013).

[3] Z. Fang, et.al., Science 302, 92 (2003).

Presenting author's email: e-mail address: cu-jung@hufs.ac.kr

³Department of Physics, Kookmin University, Seoul 136-702, South Korea.