

Organized by

Applied Physics Division, The Korean Physical Society

Center for Integrated Nanostructure Physics, Institute for Basic Science

Quantum Metamaterials Research Center

CNRS-Ewha International Research Center (CERC)

Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science

KRISS, Headquarter of New Technology Convergency Type Growth Engine Program

Center for Advanced X-ray Science

Sponsored by

The Korean Federation of Science and Technology Societies

Park SYSTEMS

WizOptics Co., Ltd.

Jeju Convention & Visitors Bureau

NT-MDT

Po-Na15-120

Broadband coherent perfect absorption of epsilon-near-zero tunable indium tin oxide thin films in the near infrared

Chang Kwon Hwangbo*, Tae Young Kim*, Md. Alamgir Badsha*, Junho Yoon*, Seonyoung Lee*, Wonyoung Kim*, Young Chul Jun**

(*Inha University, **Ulsan National Institute of Science and Technology)

Po-Na15-121

Nanostructure Formations by Irradiating Ions to Carbon Nanotubes on Polymer Substrates

Woongbin Yim, Huiseong Jeong, S.J. Park, Y.H. Ahn, Soonil Lee, Ji-Yong Park (Ajou University)

Spin and Magnetism

Po-SP15-017

Self-heating effects of FeCo fluids by alternative magnetic fields Ki Hyeon Kim, Jinu Kim, Joonsik Lee, Baekil Nam (Yeungnam University)

Po-SP15-018

Spin reorientation in Mg doped Y-type hexaferrite investigated by Mossbauer spectroscopy

Jung Tae Lim, Taejoon Kouh, Chul Sung Kim (Kookmin University)

Po-SP15-019

Crystal and magnetic properties of $Na_{0.99}Li_{0.01}FeSO_4F$ by using Mossbauer spectroscopy

Hyunkyung Choi, Soyeon Barng, Sam Jin Kim, Bo Wha Lee**, Chul Sung Kim (*Kookmin University, **Hankuk University of Foreign Studies)

Po-SP15-020

Magnetic properties of cathode material $Li_{0.8}Na_{0.2}FePO_4$ with Mossbauer spectroscopy

Byung Ug Ko*, Mun Hwan Kim**, Jung Chul Sur***, In-bo Shim*, Chul Sung Kim* (*Kookmin University, **Dongjin Semichem, ***Wonkwang University)

Magnetic properties of cathode material Li_{0.8}Na_{0.2}FePO₄ with Mössbauer spectroscopy

Byung Ug Ko*, Mun Hwan Kim**, Jung Chul Sur***, In-bo Shim* and Chul Sung Kim*

* Department of Physics, Kookmin University, Seoul, 136-702 Republic of Korea

** Dongjin Semichem Co., Ltd., Hwaseong, Gyeonggi-do, Republic of Korea

*** Department of Microelectronics and Display Technology, Wonkwang

University, Iksan 570-749, Korea

We synthesized Li_{0.8}Na_{0.2}FePO₄ by solid state method. The mixtures of FeC₂O₄·N₂H₂O₅ NH₄H₂PO₄, Na₂CO₃, and Li₂CO₃ were calcined at 300 °C for 4 hours under argon atmosphere and then pelleted. Finally theses mixtures sintered at 700°C for 10 hours under argon atmosphere [1]. These samples were measured by x-ray diffractometer (XRD) and this XRD pattern was analyzed by Rietveld refinement method. One phase was LiFePO₄ and the other was NaFePO₄. The magnetic properties of these samples were measured by vibrating sample magnetometer (VSM) and Mössbauer spectrometer. The magnetization curves of zero-field-cooled (ZFC) and field-cooled (FC) were measured by VSM and indicated the Néel temperature (T_N) . The Néel temperature (T_N) was determined to be 51 K by the magnetization curves and the Mössbauer spectrum. From measured the Mössbauer spectrum at 4.2 K, the magnetic hyperfine field (H_{hf}) , electric quadrupole splitting (E_0) and isomer shift (δ) values was determined to be $H_{\rm hf} = 130.50$ kOe, $\Delta E_{\rm Q} = 2.63$ mm/s, $\delta = 1.25$ mm/s. $\theta = 20.0^{\circ}$, ϕ = 0.0°, η = 0.74 and R = 2.98. At 295 K, the electric quadrupole splitting (E_0) and isomer shift (δ) was determined to be $\Delta E_0 = 3.02$ mm/s and $\delta = 1.24$ mm/s. This isomer shift (δ) values meant that the state of Fe ions were ferrous (Fe²⁺).

[1] Y. Zhu, R. Zhang, L. Deng, T. Yi, M. Ye, J. Yao, C. Dai, Metallurgical and Materials Transactions E 2, 33 (2015).