Tanctional Taterials InterContinental Nanjing, China Aug 27-Aug 30, 2018 | Forced Electrical Stress based Direct Current Generator Via Triboelectric Effect 35 | |---| | Efficiency Enhancement of Dye Sensitized Solar Cells with Metal-ion-adsorbed ZnO Nonorods | | Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma | | Antiferromagnetic ordering of lithium deintercalated Fe1-xZnxPO4 by Mössbauer | | spectroscopy | | Tunable Arsenene bandgap in Arsenene-Graphene heterostructures | | Crystal structure and magnetic properties of fluorophosphates Na2Fe0.9Mn0.1PO4 F cathode material | | High-Performance Planar Crosslinked Polyaniline Based Microsupercapacitors 41 | | Structural color filters with improved color purity by suppressing higher-order resonances 42 | | Enhanced Magnetoresistance Induced by Coherent Magnon Current in Magnon Valve 42 | | Fabrication of Superhydrophobic Surfaces Using Electrohydrodynamic Lithography 43 | | Silk Film supported reduced Graphene Oxide Field Effect Transistor44 | | The Effect of Talc Concentration on the Peeling Characteristics of UV-curable Acrylic Coating Agent | | Growth of nb dopped MoS2 using RF sputtering and its physical properties 46 | | Supercapcitor performance of carbon nanofiber electrodes derived from 6FDA-based polyimides | | High sensitive piezoelectric acoustic sensor based on two dimensional MoS248 | | Growth of Large-Area AB-Stacked Bilayer Graphene on h-BN/Pt Foils by Chemical Vapor Deposition | | Three-dimensional perovskite-type oxide nano-fiber webs for soot oxidation 50 | | High photoluminescence properties of transparent nanofiber using C-dots 51 | | Study on the force transfer by external force to a molecular level using spiropyran molecular sensor covalently linked polyurethane | | Dopant-free hole transport meaterials for p-i-n planar perovskite solar cells paasivating defect site at the interface | | p18-4-Conjugated Polymeric Nanohybrids for Enhanced Breast Cancer Targeting in Photodynamic Therapy | | Thermal and Mechanical Properties of Porous Polymeric Composites Prepared by UV-
Curing Process | | Advances in magnetic biochar adsorptive characteristics enhancements: Role of production route and in/ex-situ magnetic-field effect | | Electrospun PAN/PAA nanocomposite with high transparency and superfine fibrils 57 | ## Antiferromagnetic ordering of lithium deintercalated Fe1-xZnxPO4 by Mössbauer spectroscopy ## Hyunkyung Choi, Chul Sung Kim Kookmin University, Korea, Republic of (South Korea); newton@kookmin.ac.kr The structural and magnetic phase transitions in lithium deintercalated Fe1-xZnxPO4 (x=0.0, and 0.02) were investigated by x-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The crystalline structure of the Fe1-xZnxPO4 were determined to be orthorhombic with space group Pnma. The Fe1-xZnxPO4 compared to LiFe1-xZnxPO4 had enhanced lattice distortions along the c-axis because the unit cell volume decreased due lithium deintercalaction. The temperature dependence of magnetic susceptibility of Fe1-xZnxPO4 show antiferromagnetic behaviors. The Néel temperature (TN) decreased from 114 K for FePO4 to 82 K for Fe0.8Zn0.2PO4. Also, temperature dependent Mössbauer spectra of Fe1-xZnxPO4 below TN were fitted with eightlines Lorentzian (the relatively small lines). The room temperature Mössbauer spectrum shows one-doublet with the measured values of electric quadrupole splitting Δ EQ = 1.51 mm/s, and isomer shift δ = 0.31 mm/s for x=0; Δ EQ= 1.38 mm/s, and δ = 0.31 mm/s for x=0.2 indicating ferric (Fe3+) ions. These values decreased with increasing Zn content due to decreasing number of interactions between Fe ions. The magnetic hyperfine field (Hhf), polar angle (θ), azimuthal angle (θ), asymmetric parameter (η), ratio of electric quadrupole interaction to magnetic dipole interaction (R) values of the Fe0.8Zn0.2PO4 at 4.2 K were determined to be Hhf = 491.43 kOe, θ = 66, θ = 49, η = 0.8, and R = 0.5. We conclude that the different value of hyperfine field and magnetic susceptibility, indicating that the superexchange interaction via Fe-O-Fe link is stronger than that for Fe-O-Zn link.