The 11th International Conference on Advanced Materials and Devices

ICAMD2019

December 10~13, 2019 Ramada Plaza Jeju Hotel, Jeju, Korea

Organized by

- · Applied Physics Division, The Korean Physical Society
- IBS-Center for Artificial Low Dimensional Electronic Systems
- IBS-Center for Integrated Nanostructure Physics
- · IBS-Center for Quantum Nanoscience, Ewha Womans University
- SRC-Center for Advanced X-ray Science
- SRC-Center for Quantum Coherence in Condensed Matter
- · University of Ulsan & Ewha Womans University
- GRI-TPC International Research Center
- SRC-Van der Waals Materials Research Center
- Center for 2+ Hybrid Dimensional Devices, Konkuk University
- IBS-Center for Nanoparticle Research
- IBS-Center for Correlated Electron Systems
- SRC-Center for Topological Matter
- BK21 Plus, Department of Physics, Ewha Womans University
- New and Renewable Energy Research Center, Ewha Womans University

Sponsored by

- The Korean Federation of Science and Technology Societies
- Korea Tourism Organization
- · Jeju Convention & Visitors Bureau

~

Mizokawa***, Yoshiyuki Yoshida****, Wonshik Kyung*, Changyoung*

(*Seoul National University, **Lawrence Berkeley National Laboratory, ***Waseda University, ****National Institute of Advanced Industrial Science and Technology)

•

Spintronics and Magnetic Materials

Poster Session

TUE-SM19-078 TUE-SM19-108	Huge Spin-Transfer Torque in Ferromagnetic Pd/Co/Pd Film Dae-Yun Kim, SeongHyub Lee, Yune-Seok Nam, Ji-Sung Yu, Yong-Keun Park, Byoung-Chul Min, Sug-Bong Choe (Seoul National University) Rotationally aligned dry transfer stacking of 2D Transition Matal Diphaloggapide	τι
	Debottam Daw*,**, Riya Sebait*,**, Chandan Biswas*, Young Hee Lee*,** (*Center for Integrated Nanostructure Physics-Institute for Basic	τι
TUE-SM19-115	Science, **Sungkyunkwan University) The strong correlation between inelastic light scattering signals and dielectric capping layer thickness June Seo Kim, Jinyong Jung, Chun-Yeol You (Deegu Gwonghuk Institute of Science and Technology)	TU
TUE-SM19-134	Magnetocaloric effect of Sm1-xSrxCoO3 perovskites Tien Van Manh*, Jinyong Jung**, Yen Pham*, Seong-Cho Yu***, The-Long Phan****, Chun-Yeol You**, Dong-Hyun Kim* (*Chungbuk national university, **Daegu Gyeongbuk Institute of Science & Technology, ***Chungbuk National University, ****Ulsan National Institute of Science and Technology,	π
TUE-SM19-187	Searching magnetic states using an unsupervised machine learning algorithm with the Heisenberg model Heeyoung Kwon*, Nam Jun Kim**, Chanki Lee**, Changyeon Won**	TU
TUE-SM19-190	Manipulation of Magnetic Anisotopy by Pt Under-Layer Thickness in Pt/Co/Pt Films Ji-Sung Yu*, Dae-Yun Kim*, Seong-Hyub Lee*, Jun-Young Chang*, Jung-Hyun Park*, Yong-Keun Park*, Duck-Ho Kim**,	TU C
TUE-SM19-196	Byoung-Chul Min***, Sug-Bong Choe* (*Seoul National University, **Kyoto University, ***Korea Institute of Science and Technology) Interfacial magnetic properties in 3d-transition metal alloy thin films following tendency of the Slater-Pauling curve Chun-Yeol You, Nam-Hui Kim, Joonwoo Kim, Eunchong Baek,	τυ

	June-Seo Kim	
	(Daegu Gveongbuk Institute of Science and Technology)	
TUE-SM19-201	Influence of Thermal Treatments on Structure, Electrical and	
	Magneto-Optical Properties of GeTe/Sb2Te3 Multilavers	
	Nauven Le Thi	
	(Chungbuk National University)	
TUE-SM19-220	limited stochastic current for energy ontimized switching of	
102 0000 220	spin-trapsfer-torque magnetic random access memory	
	Funchong Back Indra Purnama, Chun Vaol Vou	
	Deegu Gyoongbuk Institute of Science and Technologial	
THE-SM19-226	Deformation of a vertex acro structure through the sector i	
101-310113-220	metion of a vortex core structure through the gyrotropic	
	Hoo Sung Hon Secondel on Dealthead have Maria	
	Hee-Sung Han, Sooseok Lee, Dae-Han Jung, Myeonghwan	
	(Uisan National Institute of Science and Technology)	
TUE-SIV19-246	Optical Properties of Single Crystal Crl3 at Low Temperature	
	Jonghyeon Kim*, Kyung Ik Sim*, Suhan Son**, Je-Geun	
	Park**, Jae Hoon Kim*	
	(*Yonsei University, **Seoul National University)	
TUE-SM19-257	Observation of modulated spin-charge conversion	
	ratio in 2D limit topological insulator by THz emission	
	spectroscopy	
	Hanbum Park, Jonghoon Kim, Kwangsik Jeong, Mann-Ho Cho	
	(Yonsei University)	
TUE-SM19-288	Versatile Motion Control of Magnetic Skyrmion Pair with Spin	
	Transfer Torques	
	Nam Jun Kim, Sang Pyo Kang, Chan Ki Lee, Han Gyu Yoon,	
	Hee Young Kwon, Chang Yeon Won	
	(Kyung Hee University)	
TUE-SM19-293	A19-293 Magnetic-field-controlled diode using InAs nanowire	
	Jeehoon Jeon*, Taeyueb Kim*, Sangsu Kim**, Sungjung	
	Joo*, Jae Cheol Shin***, Hyun Cheol Koo**, Jinki Hong*	
	(*Korea Institute of Science and Technology, **Korea University,	
	***Yeungnam University)	
TUE-SM19-299	Neutron diffraction of Y-type hexaferrite Ba2Co2-	
	xZnxFe12O22 (x=0.5, 1.0, 1.5, 2.0)	
	Jeonghun Kim*, Jung Tae Lim**, Sam Jin Kim*, Chul Sung Kim*	
	(*Kookmin University, **Korea Institute of Materials Science)	
TUE-SM19-300	Magnetism and hyperthermia properties of Co-doped	
	MnFe2O4 nanoparticles	
	Hyunkyung Choi*, Minseon Kim*, Hyung Joon Kim**, Sung	
	Baek Kim***	
	(*Kookmin University, **LG Chem Research Park, ***Konyang	
	University)	

Neutron diffraction of Y-type hexaferrite Ba₂Co_{2-x}Zn_xFe₁₂O₂₂ (x=0.5, 1.0, 1.5, 2.0)

Jeonghun Kim¹, Jung Tae Lim², Sam Jin Kim¹, Chul Sung Kim¹

¹Department of Physics, Kookmin University, Seoul, 02707, Korea ²Power and Ceramic Division, Korea Institute of Materials Science, Changwon 51508, Korea

We studied crystallographic, magnetic structure and magnetic properties of polycrystalline Y-type hexaferrite $Ba_2Co_{2-x}Zn_xFe_{12}O_{22}$ (x = 0.5, 1.0, 1.5, 2.0). The samples were prepared by using the solid-state reaction method. High-purity oxides were used as starting materials and were produced by one calcination at 1000 °C and one sintering at 1100 °C. The neutron diffraction patterns were obtained at Korea Atomic Energy Research Institute HANARO HRPD (high resolution powder diffractometer, $\lambda = 1.8348$ Å) reactor. The x-ray diffraction and neutron diffraction patterns obtained at room temperature were refined by using the Rietveld refinement method with FULLPROF program. In particular, the neutron diffraction patterns of Ba₂Co_{2-x}Zn_xFe₁₂O₂₂ (x=2.0) sample were measured from 298 to 573 K. The crystallographic structure of Ba₂Co_{2-x}Zn_xFe₁₂O₂₂ was confirmed to be rhombohedral with the space group R-3m. The lattice constants (a_0, c_0) and unit cell volume of samples were increased increasing Zn contents by refined x-ray diffraction and neutron diffraction patterns. From neutron diffraction patterns of Ba₂Zn₂Fe₁₂O₂₂ sample at various temperatures, the diffraction peaks intensity of magnetic phase, as seen in the super-lattice peak at 21.8° and 23°, was decrease as temperature increases due to decreasing thermal agitation, and it could be seen that it is a magnetic phase which disappears completely from the temperature range above Curie temperature. Curie temperature was the same result as the determination of Curie temperature in our previous study.