Sol-gel방식으로 합성된 garnet \(\text{Nd}_{1-x}\text{Bi}_x\text{Y}_2\text{Fe}_5\text{O}_{12} \)의 Mössbauer 분광학 연구

업영량 · 김철성*

국민대학교 물리학과, 서울 136-702

이 재광

건국대학교 응용물리학과, 충주 380-701

(1998년 12월 14일 발음)

Ethylene glycol을 용매로 이용한 sol-gel법을 이용하여 garnet \(\text{Nd}_{1-x}\text{Bi}_x\text{Y}_2\text{Fe}_5\text{O}_{12} \) (\(z=0.0, 0.25, 0.5, 0.75, 1.0 \))의 분말시료를 합성하였다. Garnet의 결정학적 및 자기적 특성은 X선 회절법, 전동시료 자화율 측정법, Mössbauer 분광법을 이용하여 연구하였다. \(\text{Nd}_{1-x}\text{Bi}_x\text{Y}_2\text{Fe}_5\text{O}_{12} \)의 X-ray 회절 분석 결과 결정구조가 모두 cubic임을 알 수 있었다. Mössbauer 실험은 12 K부터 650 K까지 취하였으며 16(a), 24(d)자리 모두 Fe\(^{3+}\)가 임을 알았다. Curie온도는 \(x=0.0 \)인 경우 \(T_c=630 \text{ K} \)에서 Bi 치환량이 증가함에 따라 다소 감소하였다. \(\text{Nd}_{0.5}\text{Bi}_{0.5}\text{Y}_2\text{Fe}_5\text{O}_{12} \) 시료의 철의 위치에 따른 Debye 온도는 24(d) 자리는 \(\Theta_d=316\pm5 \text{ K}, 16(a) \) 자리가 \(\Theta_d=282\pm5 \text{ K} \)임을 알았다. Bi 치환량이 증가함에 따라 장파의 spin wave가 더 줄어졌음을 알았다. VSM 측정 결과 Bi 치환량이 증가함수록 보지적이 감소함을 보였으며 최대 포화 자화 값은 치환량에 영향을 받지 않음을 알 수 있었다.