만약 이 내용을 읽는 사람이 이해하지 못할 경우, 추가적인 해석을 제공할 수 있습니다. 하지만, 제공된 정보는 명확하지 않아서 가능한 한 자세히 해석해드립니다.

I. 서론

M-type의 hexagonal 결정구조를 가지는 바륨페라이트는 c-축이 자화용이으로 결정자가 바형성이 크고, 일반적으로 육각관상 형태의 입자를 나타냅니다. 화합수에 수선한 c-축과 일치하는 짧은 종이를 나타내는 계육이다. 현재 고밀도 수직 자기기록매체로 많이 이용되고 있으며 microwave 용액 재료로도 많이 개발되어지고 있다[1-5].

BaFe₂O₄는 millimeter wave용 재료로 개발하기 위하여 현재 50-75 GHz 대역에서 활발한 연구가 진행되고 있으나, 낮은 주파수 대역에서는 사용할 수 없으며, 고가격의 바형기기임이 필요하다는 단점이 있다. 현재 Fe₃⁺바디 Zn²⁺-Ti⁴⁺, Co²⁺-Zr⁴⁺를 처치하여 9 GHz 이하의 X-band 영역에서 사용하는 연구가 활발히 진행중이다[1, 2]. 또한, Fe²⁺이온도는 Al³⁺, Ga⁺, Sc⁺등[3]의 3+이온들이나 Co²⁺-Ti⁴⁺[4], Zn²⁺-Sn⁴⁺[5]등의 2+4+의 조합으로 표지하여 보다 자기적 특성이 좋은 바륨페라이트 개발에 관한 연구가 활발히 이루어지고 있다.

그러나 이러한 Co-Ti이온들이 Fe²⁺이온들 처치될 때 4f, 2n, 4f, 12k, 및 2b-site중에서 어느 site로 처치되는지에 대한 연구는 아직 부족한 실정이다. 치료에 따른 같은 구조의 바륨페라이트의 사용용도에 따라 다양하게 응용될 수 있으며, 본 연구에서는 치료에 따른 치료의 같은 규모의 site로 Mossbauer 분광기를 통하여 연구하였으며 또한 치료된 이온의 site 위치도 확인하여 보자력, 포화저항 및 결정자의 이동성에 미치는 영향을 연구하였다.

II. 실험방법

Co²⁺-Ti⁴⁺를 처치한 BaFe₁₂₋ₓCoₓTi₁₉Ο₃₀ 사건을 sol-gel법으로 제조하였다. 6, 7. 출발물질로는 바륨 nitate Barium nitrate, Fe nitrate, Fe(NO₃)₃, 9H₂O, cobalt acetate Co(C₂H₃O₂)₂·4H₂O, titanium isopropoxide Ti(OCH(CH₃)₂)₄, iron(III) nonahydrate를 사용하였으며, 용매로는 ethylene glycol과 2-methoxyethan와 약간의 종류수를 사용하였다. 참고로는 die-ethanolamine(DEA)을 사용하였으며 stock solution의 용 농도는 0.2 M로 선택하였다. 균일성을 얻기 위해 glycerol(CH₂OHCH₂CH₂OH)과 methanol(CH₃OHCH₂CH₂OH)을 혼합한 solvent로 80℃에서 12시간 반응을 시킨 후, 다시 H₂O와 ethylene glycol(HOCH₂CH₂OH)을 넣고 80℃에서 12시간 반응을 시켰다. 이후 H₂O를 제거한 후 150℃에서 2시간 건조하여 초기 분말을 제조한 후, 건조된 분말을 950℃에서 6시간 동안 공기 중에서 열처리하여 BaFe₁₂₋ₓCoₓTi₁₉Ο₃₀ 시료를 제조하였다.

Sol-gel법으로 만든 용액의 결정상태 및 전류 유기물의 유무를 확인하기 위하여 JASCO의 FT/IR/300E 모델을 사용하여 FT/IR 분석을 행하였으며 결정조건에 대한 유기물의 분해 및 결정상의 생성물을 확인하고 열처리 조건을 알아보기 위하여, TA Instrument의 SDT 2000 모델을 이용하여 열분석(TG/DTA)를 수행하였다. 열처리된 분말의 결정성을 확인하기 위하여, Phillips 사의 X-pert 3170 x-선 회절분석기(Cu-Kα)를 이용하여 격자상수지를 구하였다. Mossbauer 스펙트럼은 전기학적 동기속도형 Mossbauer 분광기로 취급하며, γ선원은 Dupont 회사 제품의 Rh 도금에 들어있는 실온상대의 30 mCi의 Co 단일선원을 사용하였다. VSM은 Lake Shore