Exchange Interactions in $Y_3Fe_{5-x}Cr_xO_{12}$ Fabricated by a Sol-Gel Method Young Rang Uhm, Sam Jin Kim, and Chul Sung Kim Abstract—The Cr-containing YIG we examined, and the exchange interactions and site distributions were studied by 57 Fe Mössbauer spectroscopy. The exchange parameters for Y_3 Fe_{4,5}Cr_{0,5}O₁₂ were $J_{ad} = -52.23 \ k_B$, $J_{aa} = -27.85 \ k_B$ and $J_{dd} = -39.16 \ k_B$, and their values become larger as the amount of Cr decreases in garnet. The results show that chromium in Y_3 Fe_{5-x}Cr_xO₁₂ compounds (x = 0.0, 0.25, 0.5, and 1.0) occupy octahedral sites. The lowering of magnetic ordering temperature results from replacing Fe³⁺ by Cr³⁺ in the octahedral sites. Mössbauer spectra can be analyses using 3 or 4 sets of six Lorentzians with increasing amount of Cr³⁺. It results from the distribution ($_4$ C_n) of Fe³⁺ and Cr³⁺ at octahedral sites. The ratios of areas, a, d_1 , d_2 , d_3 , in Y_3 Fe_{4.5}Cr_{0.5}O₁₂ are 0.33, 0.22, 0.28, 0.14, respectively. Index Terms—Cation distribution, exchange interactions, garnet.