MAGNETORESISTANCE IN DOUBLE PEROVSKITE Sr₂FeMoO₆ J. Y. Kim¹, Y. J. Kim¹, B. J. Park¹, B. W. Lee^{1*}, C. S. Hwang², C. H. Choi², H. K. Chae², C. S. Kim³ ¹Department of Physics, Hankuk University of Foreign Studies, Yongin, Kyungki 449-791, Korea ²Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyungki 449-791, Korea ³Department of Physics, Kookmin University, Seoul, 136-702, Korea *e-mail:bwlee@san.hufs.ac.kr Abstract: Double perovskite Sr_2FeMoO_6 (SFMO) has been prepared by sol-gel process using alkoxide precursors followed by sintering in a stream of 5% H_2 /Ar at various sintering temperatures. The fact that superlattice lines are observed in the X-ray diffraction pattern for SFMO would suggest the high degree of ordering of Fe and Mo in the perovskite lattice of SFMO. Electrical resistivity $\rho(T)$ and magnitude of magnetoresistance (MR) decrease with increasing sintering temperature. SFMO exhibits a sharp low-field MR at room temperature. The magnitude of negative MR with the magnetic field of 0.8 T at 12 and 300 K is as large as 33 and 2.5%, respectively. The observed MR is proportional to the square of magnetization indicating that the MR feature in SFMO is explained by spin-polarized tunneling between grains.