Journal of Magnetism and Magnetic Materials 254-255 (2003) 595-597 www.elsevier.com/locate/jmmm ## The Mössbauer study of magnetic phase transition in single crystal $(Nd_{1-x}Sm_x)_{1/3}Sr_{2/3}FeO_3$ Young Rang Uhm^a, Chang Woo Lee^a, Sung Ro Yoon^a, Jae-Gwang Lee^b, Chul Sung Kim^{a,*} ^a Department of Physics, Kookmin University, Seoul 136-702, South Korea ^b Department of Physics, Konkuk University, Chungbuk 380-701, South Korea ## Abstract $(Nd_{1-x}Sm_x)_{1/3}Sr_{2/3}FeO_3$ were synthesized and their charge ordering (CO) transition related to lattice distortion was systematically investigated. The canted antiferromagnetic spin ordering exists below Néel temperature (T_N) . This phase transition is accompanied by charge disproportionation into nominally Fe^{3+} and Fe^{5+} . The CO, a sequence of Fe^{+3} Fe^{+3} Fe^{+3} Fe^{+3} Fe^{+3} Fe^{+5} , which exists align the [1 1 1] direction of pseudo cubic perovskite. The three kinds of iron, Fe^{3+} , Fe^{5+} and Fe^{4+} , are found below T_N . The amount of Fe^{4+} increases from 13% to 66% as temperature increases. This can be interpreted to mean that the charge ordering and disordering phase coexists. The charge ordering state is realized by strong hybridization between Fe and O atoms. The Néel temperature decreases with the increase of the Sm concentration. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Mössbauer spectroscopy; Charge ordering (CO); Phase transition; Charge disproportionation (CD)