JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 2003

Neutron diffraction and Mössbauer studies of $CoAl_xFe_{2-x}O_4^{a}$

Sam Jin Kim, Bo Ra Myoung, and Chul Sung Kim^{b)} Department of Physics, Kookmin University, Seoul 136-702, Korea

(Presented on 13 November 2002)

Al substituted CoAl_xFe_{2-x}O₄ powders were fabricated using the sol-gel method, and their magnetic and structural properties were studied with thermal analysis, x-ray, neutron diffraction, Mössbauer spectroscopy, and magnetization measurements. The crystals of the samples x=0.1 and 0.2 were found to have a cubic spinel structure with lattice constants $a_0 = 8.3864$ and 8.3784 Å, at room temperature, respectively. Neutron diffraction patterns on CoAl_{0.1}Fe_{1.9}O₄ were obtained at various temperature ranges from 10 to 816 K. Neutron diffraction at 10 K revealed a cubic spinel structure of ferrimagnetic ordering, with the effective magnetic moments of $Fe^{3+}(A)(-4.18 \mu_B)$, $\mathrm{Fe^{3+}}(\mathrm{B})(4.81\mu_{\mathrm{B}})$, and $\mathrm{Co^{2+}}(\mathrm{B})(2.98\mu_{\mathrm{B}})$, respectively. The temperature dependence of the magnetic hyperfine field in ⁵⁷Fe nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the Néel theory of magnetism. For the sample CoAl_{0.1}Fe_{1.9}O₄, the intersublattice A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B} = -23.3k_B$ and $J_{A-A} = -18.0k_B$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-R}=5.6k_B$. It is interpreted that the unusual reduction of magnetic moment in Fe³⁺(A) and a noticeable strength of the A-A interaction are closely related to the covalency effects. © 2003 American Institute of *Physics.* [DOI: 10.1063/1.1557955]