

Available online at www.sciencedirect.com

Physica B 345 (2004) 99-102

Neutron diffraction and magnetic properties of $Sr_2Fe_{0.9}Cr_{0.1}MoO_6$

Seung-Iel Park^a, Hong Joo Ryu^a, Sung Baek Kim^b, Bo Wha Lee^c, Chul Sung Kim^{a,*}

^a Department of Physics, Kookmin University, Seoul 136-702, South Korea
^b Department of Physics and Astronomy, Rutgers University, NJ 08854, USA
^c Department of Physics, Hankuk University of Foreign Studies, Kyungi 449-791, South Korea

Abstract

The crystalline structure of the ordered perovskite $Sr_2Fe_{0.9}Cr_{0.1}MoO_6$ has been determined to be tetragonal at room temperature, with lattice parameters $a_0 = 5.578$ Å and $c_0 = 7.866$ Å. The lattice volume of Cr doped sample was smaller than that of Sr_2FeMoO_6 . Neutron diffraction patterns for the $Sr_2Fe_{0.9}Cr_{0.1}MoO_6$ compound have been taken at different temperatures, from 10 to 473 K. The crystal symmetry is cubic (Fm $\bar{3}$ m) in the paramagnetic phase and tetragonal(I4/mmm) in the ferrimagnetic phase. The Curie temperature of Cr doped sample is 415 K.

PACS: 61.12. -q; 61.10. -i

Keywords: Neutron diffraction; Ordered perovskite; X-ray diffraction; Magnetic moment