

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 272-276 (2004) 1764-1766

www.elsevier.com/locate/jmmm

Anisotropic hyperfine field fluctuation in $La_{0.67}Pb_{0.33}Mn_{1-x}{}^{57}Fe_xO_3$

Hi Min Lee^a, Sam Jin Kim^a, In-Bo Shim^a, Sung Baek Kim^b, Chul Sung Kim^{a,*}

^a Department of Physics, Kookmin University, Songbuk-gu, Seoul 136-702, South Korea ^b Neutron Physics Department, Korea Atomic Energy Research Institute, Daejeon 305-600, South Korea

Abstract

X-ray and neutron diffraction, Mössbauer spectroscopy, and vibrating sample magnetometer have been used in order to study the structural and magnetic properties of the $La_{0.67}Pb_{0.33}Mn_{1-x}{}^{57}Fe_xO_3$ perovskite compounds. Samples were fabricated using the sol–gel method. As the temperature increases toward T_C , Mössbauer spectra of $La_{0.67}Pb_{0.33}Mn_{0.99}{}^{57}Fe_{0.01}O_3$ show line broadening and the difference between 1, 6 and 3, 4 linewidths because of anisotropic hyperfine field fluctuation. Temperature dependence of anisotropy is calculated from the relaxation rate. © 2003 Elsevier B.V. All rights reserved.

PACS: 61.10.-i; 61.12.-q; 76.80.+y

Keywords: Mössbauer spectroscopy; Sol-gel method; Perovskite