

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 290-291 (2005) 1551-1554

www.elsevier.com/locate/jmmm

Synthesis and magnetic properties of LiFe₅O₈ powders by a sol–gel process

Sung Yong An, In-Bo Shim, Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

Available online 9 December 2004

Abstract

LiFe₅O₈ ferrite has been prepared by a sol–gel method. The crystal structure was found to be cubic spinel structure with a lattice constant $a=0.8336\,\mathrm{nm}$. LiFe₅O₈ powders that were annealed at and above 1173 K have a single-phase spinel structure. However, powders annealed at 973 and 1073 K have a typical spinel structure with small amount of hematite (α –Fe₂O₃) phase. The Néel temperature of LiFe₅O₈ was $T_{\rm N}=905\pm3\,\mathrm{K}$. The isomer shift values at room temperature for the A and B patterns are found to be 0.18 and 0.21 mm/s relative to the Fe metal, respectively, which are consistent with high-spin Fe³⁺ charge states. The saturation magnetization $M_{\rm S}$ was 64.4 emu/g at room temperature under the applied magnetic field of 10 kOe after annealing at 1273 K in air atmosphere for 6 h.

PACS: 74.25.Ha; 75.50.Gg; 76.80.+y

Keywords: Lithium iron oxide; Sol-gel method; Mössbauer spectroscopy