

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 300 (2006) 300-305

www.elsevier.com/locate/jmmm

Magnetic and optical properties of spinel $Fe_xCo_{3-x}O_4$ thin films

Kwang Joo Kim^{a,*}, Hee Kyung Kim^a, Young Ran Park^a, Geun Young Ahn^b, Chul Sung Kim^b, Jae Yun Park^c

^aDepartment of Physics and Center for Emerging Wireless Transmission Technology, Konkuk University, Seoul 143-701, Korea

^bDepartment of Physics, Kookmin University, Seoul 136-702, Korea

^cDepartment of Materials Science and Engineering, University of Incheon, Incheon 402-749, Korea

Received 28 March 2005; received in revised form 12 May 2005 Available online 14 June 2005

Abstract

Magnetic and optical properties of $Fe_xCo_{3-x}O_4$ thin films grown by sol-gel method have been investigated as the Fe composition (x) increases from 0 to 2. X-ray diffraction measurements revealed that the normal- and inverse-spinel phases coexist for $0.76 \le x \le 0.93$. The normal-spinel phase is dominant below x = 0.76 while the inverse-spinel phase above x = 0.93. The lattice constant of the inverse-spinel phase is found to be larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. The $Fe_xCo_{3-x}O_4$ films containing the inverse-spinel phase exhibit net magnetization that increases with increasing x. Conversion electron Mössbauer spectrum measured on the x = 0.93 sample showed that Fe^{2+} ions prefer the octahedral sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates a dominance of the normal-spinel phase for low x in which Fe^{3+} ions mostly occupy the octahedral sites. Observation of a crystal-field transition at $1.6 \, \text{eV}$ originating from tetrahedral Fe^{3+} ion confirms the existence of the inverse-spinel phase for high x.

© 2005 Elsevier B.V. All rights reserved.

PACS: 75.50.-y; 75.70.-i; 78.20.Ci

Keywords: Spinel; Phase transition; Magnetization; Optical absorption