Ferromagnetic properties of anatase $Ti_{1-x}Fe_xO_{2-\delta}$ thin films

Kwang Joo Kim^{a)} and Young Ran Park Department of Physics, Konkuk University, Seoul 143-701, Korea

Geun Young Ahn and Chul Sung Kim Department of Physics, Kookmin University, Seoul 136-702, Korea

Jae Yun Park^{b)}

Department of Materials Science and Engineering, University of Incheon, Incheon 402-749, Korea

(Presented on 2 November 2005; published online 26 April 2006)

The effects of Fe doping on the magnetic and electronic properties of reduced $\text{TiO}_{2-\delta}$ thin films have been investigated. Anatase $\text{Ti}_{1-x}\text{Fe}_x\text{O}_{2-\delta}$ films exhibit a ferromagnetic behavior at room temperature for a certain range of Fe doping. Conversion electron Mössbauer spectroscopy measurements indicate that Fe^{2+} and Fe^{3+} ions coexist in the Fe-doped films, substituting the octahedral Ti^{4+} sites. The contribution of possible Fe_3O_4 clusters to the observed ferromagnetism is not likely to happen. The $\text{Ti}_{1-x}\text{Fe}_x\text{O}_{2-\delta}$ films exhibit a p-type character by Hall effect measurements but the observed ferromagnetism turns out to be independent of the hole concentration. The observed ferromagnetism in the $\text{Ti}_{1-x}\text{Fe}_x\text{O}_{2-\delta}$ films can be explained in terms of a direct ferromagnetic coupling between two neighboring Fe^{3+} ions via an electron trapped in oxygen vacancy nearby. © 2006 American Institute of Physics. [DOI: 10.1063/1.2176087]