Magnetic property and charge ordering effect in polycrystalline LuFe₂O₄

Bong Kyu Bang, Taejoon Kouh, and Chul Sung Kim^{a)}
Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

(Presented on 9 November 2007; received 13 September 2007; accepted 5 December 2007; published online 26 February 2008)

The charge ordering effect in LuFe₂O₄ powder is investigated with the vibrating sample magnetometer and Mössbauer spectroscopy. The crystal structure of LuFe₂O₄ shows the two-dimensional layered type rhombohedral($R\overline{3}m$) structure. The lattice constants are found to be a_0 =3.439 Å and c_0 =25.258 Å by the Rietveld refinement. The Néel temperature (T_N) is determined to be 250 K. The Mössbauer spectra consist of four sextets indicating the magnetic ordering below T_N , where three sets are assumed to be Fe³⁺ phases and the other is Fe²⁺ at 4.2 K, and two doublets splitting in a paramagnetic region. At room temperature, the electric quadrupole splittings (ΔE_Q) of two doublets are 0.22 ± 0.01 and 0.67 ± 0.01 mm/s, respectively. The isomer shift value of a doublet with smaller ΔE_Q is 0.18 ± 0.01 mm/s relative to the Fe metal, which is consistent with the Fe³⁺ valence state, while the value of a doublet with larger ΔE_Q is 0.83 ± 0.01 mm/s indicating Fe²⁺ state. The Mössbauer spectra suggest that the observed asymmetry below 370 K is due to the charge ordering effect between Fe²⁺ and Fe³. © 2008 American Institute of Physics.

[DOI: 10.1063/1.2838999]