Bond frustration effect of Cr ions in magnetiochromite by Mössbauer spectroscopy

Kang Ryong Choi, ¹ Sam Jin Kim, ¹ Bo Wha Lee, ² and Chul Sung Kim^{1,a)}
¹Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea
²Department of Physics, Hankuk University of Foreign Studies, Yongin, 449-791, Republic of Korea

(Presented on 7 November 2007; received 14 September 2007; accepted 15 November 2007; published online 20 March 2008)

Polycrystalline MgCr_{1.98}⁵⁷Fe_{0.02}O₄ compound was synthesized by sol-gel process. The crystal structure was found to be single-phase cubic spinel with space group of Fd3(-)m. The lattice constant a_0 and the fractional coordinate (x) of the oxygen were determined to be 8.336 Å and 0.260, respectively. The Cr–Cr linkages in ACr_{1.98}⁵⁷Fe_{0.02}O₄ (A=Mg,Zn) have bond lengths of 2.945 and 2.947 Å, respectively. We have observed larger value of Néel temperature (T_N = 12–12.5 K) in Mg, Zn chromite spinels than those of Cd, Hg-chromite spinel (T_N =6–8 K). Mössbauer spectra of MgCr_{1.98}⁵⁷Fe_{0.02}O₄ were taken from 4.2 to 295 K using a ⁵⁷Co source in a rhodium matrix. MgCr_{1.98}⁵⁷Fe_{0.02}O₄ Mössbauer spectra below T_N show the line broadening due to bond frustration. Above the Néel temperature, paramagnetic doublet is observed. The magnetic properties and Mössbauer results can be explained by the B–B exchange interaction and bond frustration in MgCr_{1.98}⁵⁷Fe_{0.02}O₄. © 2008 American Institute of Physics. [DOI: 10.1063/1.2837652]