
Articles published week of 14 JUNE 2010 Volume 96 Number 24

APPLIED PHYSICS LETTERS 96, 242505 (2010)

Strong crystalline field at the Fe site and spin rotation in olivine LiNi_{0.99} ⁵⁷Fe_{0.01} PO₄ material by Mössbauer spectroscopy

Woochul Kim,¹ Chan Hyuk Rhee,¹ Hyung Joon Kim,² Seung Je Moon,¹ and Chul Sung Kim^{1,a)} ¹Department of Physics, Kookmin University, Seoul 136-702, South Korea ²Nanomedical Graduate Program, Yonsei University, Seoul 120-749, South Korea

(Received 20 April 2010; accepted 22 May 2010; published online 15 June 2010)

The crystal structure of LiNi_{0.99} 57 Fe_{0.01} PO₄ compound has been determined to be orthorhombic by Rietveld refinement method. Temperature dependence of magnetization *M* shows an anomalous antiferromagnetic behavior. A sudden change in both the magnitude of magnetic hyperfine field and its slope below 11 K suggests that magnetic phase transition related to the spin ordering takes place abruptly. From the result of Mössbauer measurement, it is shown that a strong electric crystalline field of octahedral symmetry including the contribution of spin-orbit coupling and magnetic hyperfine field by space-modulated spin structure is acted to the sites of Fe²⁺ ions simultaneously at low temperature. © 2010 American Institute of Physics. [doi:10.1063/1.3455312]