Characterization of Partially-inverted Zinc Ferrite with a Bio-Plasma Treatment

Hyunkyung Choi, Sam Jin Kim* and Chul Sung Kim[†] Department of Physics, Kookmin University, Seoul 02707, Korea

Eun Ha Choi

Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea

(Received 6 July 2016, in final form 22 July 2016)

 ${\rm ZnFe_2O_4}$ nanoparticles were prepared by using a high-temperature thermal-decomposition method and was investigated by using X-ray diffraction (XRD), high-resolution transmission electron spectroscopy (HR-TEM), MagneTherm, vibrating sample magnetometry (VSM) and Mössbauer spectroscopy. The XRD patterns revealed cubic spinel structures with space group Fd-3m. ${\rm ZnFe_2O_4}$ nanoparticles were exposed to an argon plasma for 30 min. The self-heating temperature increased up to 37 °C during plasma treatment for 30 min. Magnetic measurements showed that the blocking temperature increased from 72 to 78 K during the plasma treatment. A high saturation magnetization was obtained in the partially-inverted spinel. In order to confirm the cation distribution and the phase transition, we performed Mössbauer measurement. The Mössbauer spectra of ${\rm ZnFe_2O_4}$ before and after plasma treatment showed ${\rm Fe^{3+}}$ valence states at room temperature. Also, the Néel temperature of ${\rm ZnFe_2O_4}$ was found to be larger after the plasma treatment.

PACS numbers: 82.80.Ej, 87.54.Br, 61.46.Df

Keywords: Mössbauer spectroscopy, Hyperthermia, Nanoparticles

DOI: 10.3938/jkps.69.847