Crystallographic and Magnetic Properties of the Hyperthermia Material $CoFe_2O_4@AIFe_2O_4$ Hyunkyung Choi, Mijeong An, Wonyoung Eom, Sae Wool Lim, In-Bo Shim, Chul Sung Kim* and Sam Jin Kim† Department of Physics, Kookmin University, Seoul 02707, Korea (Received 5 October 2016) Hard/soft CoFe₂O₄@AlFe₂O₄ core/shell nanoparticles were prepared by using a high temperature thermal decomposition method with seed-mediated growth. The structural, magnetic and thermal properties of the nanoparticles were investigated by using X-ray diffraction, vibrating sample magnetometer, MagneTherm, and Mössbauer spectroscopy. The crystal structure of nanoparticles was determined to be cubic spinel ferrite with space group Fd-3m. The CoFe₂O₄ nanoparticles were found to show high magnetization and coercivity while AlFe₂O₄ nanoparticles were found to show low magnetization and coercivity. The CoFe₂O₄@AlFe₂O₄ core/shell nanoparticles showed intermediate values of magnetization and the coercivity between those of CoFe₂O₄ and AlFe₂O₄. Also, the blocking temperature (T_B) of the nanoparticles (NPs) was observed to be 280, 50, and 225 K for CoFe₂O₄, AlFe₂O₄ and CoFe₂O₄@AlFe₂O₄, respectively. The core/shell ferrite shows a T_B near 225 K, associated with the harder CoFe₂O₄ NPs. Temperatures below 225 K, the zero-field-cooled curves show changes in their slopes at a temperature near 50 K, corresponding to the second blocking temperature associated with the softer AlFe₂O₄ NPs. PACS numbers: 82.80.Ej, 87.54.Br, 61.46.Df Keywords: Hyperthermia, Nanoparticles, Core/shell structure, Mössbauer spectroscopy DOI: 10.3938/jkps.70.173