

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

Research articles

Investigation of magnetic properties on spin-ordering effects of FeGa₂S₄ and FeIn₂S₄

Bo Ra Myoung, Jung Tae Lim, Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

ARTICLE INFO

Article history: Received 13 January 2017 Received in revised form 16 April 2017 Accepted 22 April 2017 Available online 25 April 2017

Keywords: Spin glass Spin-ordering Geometrical frustration Mössbauer analysis Gap energy

ABSTRACT

We have studied crystal and magnetic properties of chalcogenides $FeGa_2S_4$ and $FeIn_2S_4$ with X-ray diffractometer (XRD), magnetic property measurement system (MPMS), magnetometer, physical property measurement system (PPMS), and Mössbauer spectrometer. The crystal structure has 2-dimension triangular lattice structure with P-3m1 of $FeGa_2S_4$, while $FeIn_2S_4$ has inverse spinel with space group Fd3m. The AC magnetic susceptibility measurements show that $FeGa_2S_4$ is an insulating spin glass material, exhibiting geometrical frustration, unlike in the antiferromagnetic [AFM] metallic spin glass $FeIn_2S_4$. From hysteresis (M-H) curves at 4.2 K, $FeGa_2S_4$ has spin-flop behavior with an angle of 120° of triangle, as against linear slope of $FeIn_2S_4$ due to anti-parallel spin. The gap energy by splitting of $^5T_{2g}$, Δ_1 and electric quadrupole splitting ΔE_Q of $FeIn_2S_4$ are much higher than that of $FeGa_2S_4$ at 4.2 K because $FeGa_2S_4$ is geometrically frustrated magnet having degenerate ground state at low temperature.

© 2017 Elsevier B.V. All rights reserved.