Crystal and Magnetic Properties of ⁵⁷Fe Doped MnAs for Magnetic Refrigeration Application

Jung Tae Lim, Hyun Tae Cho, Sam Jin Kim and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 02707, Korea

Young Bae Lee[†]

Department of Liberal Arts, Hanzhong University, Doughae 25800, Korea

(Received 20 June 2017, in final form 28 August 2017)

The $\mathrm{Mn_{1-x}}^{57}\mathrm{Fe_x}\mathrm{As}$ (x=0.001,0.003,0.005) compounds for magnetic refrigeration application were synthesized by using a solid-vapor reaction method. We have investigated the crystallographic and magnetic properties of $\mathrm{Mn_{1-x}}^{57}\mathrm{Fe_x}\mathrm{As}$ (x=0.001,0.003,0.005) samples by using x-ray diffractometer (XRD), vibrating sample magnetometer (VSM), superconducting quantum interference device (SQUID), and Mössbauer spectrometer. The XRD patterns, revealed that all samples exhibited hexagonal space group $P6_3/mmc$ below Curie temperature (T_C), while above T_C they belong to the orthorhombic space group Pnma. The temperature-dependent magnetization curves under 200 Oe between 4.2 and 320 K showed a large hysteresis in the magnetization as a function of the temperature. To analyze the meagnetocaloric effect, the value of magnetic entropy ($-\Delta S_M$) was calculated from the isothermal initial curves up to 5 T at various temperatures. Mössbauer spectra of $\mathrm{Mn_{0.997}}^{57}\mathrm{Fe_{0.003}}\mathrm{As}$ sample were taken at various temperatures ranging from 4.2 to 315 K.

PACS numbers: 76.80.+y, 75.30.Sg, 75.60.Ej

Keywords: Mössbauer spectroscopy, Magnetocaloric effect, MnAs

DOI: 10.3938/jkps.71.575