Magnetic Properties and Mössbauer Studies of Fe₃O₄ Substituted with Gd lons Jeongho Park, Jihye Son, Haeri Kim, Seungyeop Lee, Sam Jin Kim* and Chul Sung Kim[†] Department of Physics, Kookmin University, Seoul 20707, Korea (Received 18 April 2018, in final form 4 May 2018) The $Gd_{0.05}Fe_{2.95}O_4$ nanoparticles were synthesized by seed - mediated growth and were reacted for 30, 45, 60 and 75 min (Gd_{30} , Gd_{45} , Gd_{60} and Gd_{75}), respectively. The samples structural and magnetic properties were investigated by x-ray diffraction (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectroscopy. The self-heating properties were investigated by using a MagneTherm device. According to XRD analysis, gadolinium (Gd) nanoparticles found to be a cubic spinel structure has a space group Fd-3m. The lattice constant (a_0) of Gd nanoparticles are 8.3633 Å and increases to 8.3721 Å as the high-temperature reaction time increases. The particle size was determined using Scherrer's equation and the maximum particle size was 10.84 nm. The maximum saturation magnetization (M_S) value of Gd_{60} at room temperature was 63.10 emu/g. The self - heating temperature of Gd_{60} at 112 kHz and 250 Oe was measured and 63.3 °C was the highest. Gd_{60} had the largest particle size and highest M_S and self-heating properties were measured. Mössbauer measurements were performed to investigate hyperfine interactions at from 4.2 to 290 K. PACS numbers: 75.75.-c, 75.78.-n, 76.30.Kg Keywords: Mössbauer spectroscopy, Hyperthermia, Gd doped ferrites DOI: 10.3938/jkps.73.112