

5TH INTERNATIONAL CONFERENCE OF ASIAN UNION OF MAGNETICS SOCIETIES

Mössbauer Studies of Li_xFe_{1/3}Mn_{1/3}Ni_{1/3}PO₄ Cathode Materials

HYUNKYUNG CHOI, 1 SOYEON BARNG, 1 and CHUL SUNG KIM1,2

1.—Department of Physics, Kookmin University, Seoul 02707, Korea. 2.—e-mail: cskim@kookmin.ac.kr

We report on the crystallographic and magnetic properties of Li_rFe_{1/3}Mn_{1/3}Ni_{1/3} PO_4 (x = 0, 1) using x-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. XRD analysis confirmed that the samples have an orthorhombic structure with space group Pnma. From the VSM measurements the samples exhibited an antiferromagnetic behavior with a Curie-Weiss temperature $\theta = -162$ K for x = 1, and $\theta = -303$ K for x = 0. The Néel temperature (T_N) and spin reorientation temperature (T_S) were determined to be 40 K and 10 K for x = 1, and 66 K and 25 K for x = 0. The hyperfine field $(H_{\rm hf})$ of LiFe_{1/3}Mn_{1/3}Ni_{1/3}PO₄ had smaller values than that of Fe_{1/3}Mn_{1/3}Ni_{1/3}PO₄ due to the magnitude of the nearest-neighbor superexchange interaction. Isomer shift (δ) values indicate that the charge states of $LiFe_{1/3}Mn_{1/3}Ni_{1/3}PO_4$ are ferrous (Fe²⁺), and that of $Fe_{1/3}Mn_{1/3}Ni_{1/3}PO_4$ are ferric (Fe³⁺). The larger values of the electric quadrupole splitting (ΔE_{Ω}) for the Fe²⁺ phase compared to the Fe³⁺ phased originated from the different lattice and valence electron contributions due to the crystalline field and valence transition. Debye temperatures ($\theta_{\rm D}$) of 338 \pm 5 K (x=1), and 370 \pm 5 K (x = 0) were obtained for the samples.

Key words: Mössbauer spectroscopy, Curie–Weiss temperature, Debye temperature, crystalline field, spin reorientation