Na₂Fe_{0.9}Mn_{0.1}PO₄F Composite as Cathode Material: Structural, Magnetic, and Mössbauer Studies

Jae Yeon Seo¹, Hyunkyung Choi¹, Ah-Yeon Lee², Seung-young Park³, and Chul Sung Kim¹

¹Department of Physics, Kookmin University, Seoul 02707, South Korea ²Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, South Korea ³Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, South Korea

Mn-doped sodium iron fluorophosphates Na₂Fe_{0.9}Mn_{0.1}PO₄F were synthesized using ball milling via a solid-state reaction route. The crystal structure and magnetic properties of the as-prepared materials were studied by using X-ray diffraction (XRD), superconducting quantum interference device (SQUID), and Mössbauer spectroscopy. Structural refinement of Na₂Fe_{0.9}Mn_{0.1}PO₄F was analyzed using the Fullprof program. From the XRD patterns, the crystal structure was found to be orthorhombic with the space group *Pbcn*. Na₂Fe_{0.9}Mn_{0.1}PO₄F has a 2-D layered structure composed of a pair of Fe(Mn)O₄F₂ octahedrons through fluorine ion sharing, similar to that of Na₂FePO₄F. The temperature dependence of the zero-field-cooled (ZFC) and field-cooled (FC) curves was measured at temperatures ranging from 1.8 to 295 K under an applied field of 100 Oe. We confirmed that the Néel temperature was 2.5 K, which is lower than that of Na₂FePO₄F ($T_N = 3.4$ K). Mössbauer spectroscopy measurements at 4.2–295 K were conducted. At all the temperatures, the spectra were fitted with a double and were determined to be Fe²⁺ ions based on an isomer shift (δ). In addition, the large value of the electric quadrupole splitting (ΔE_Q) is explained by the asymmetric local environment of the Fe ions.

Index Terms—Crystal structure, magnetic properties, Mössbauer spectroscopy, sodium-iron-fluorophosphate, superexchange interaction.