

Mn doping on Mössbauer spectroscopy of maricite-NaFePO₄ as cathode material

Jae Yeon Seo¹ · Hyunkyung Choi¹ · Chul Sung Kim¹

Received: 20 January 2021 / Accepted: 11 March 2021 © Akadémiai Kiadó, Budapest, Hungary 2021

Abstract

Transition metal ion substitution in sodium phosphate is effective in enhancing the performance of a cathode material. The maricite-NaFe_{1-x}Mn_xPO₄ (x=0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized using solid-state procedures. The lattice constants and bond lengths between Fe–O ions of NaFe_{1-x}Mn_xPO₄ increased by increasing the Mn substitutions. The temperature dependence of the magnetization for NaFe_{1-x}Mn_xPO₄ decreased with an increase in the Mn substitutions, indicating a weakened antiferromagnetic interaction. The Mössbauer spectra exhibited asymmetrical line below the Néel temperature (T_N) and were fitted with eight Lorentzian lines, owing to a strong crystalline field in the distorted Fe(Mn)O₆ octahedral site.

Keywords Maricite-NaFePO $_4$ · Manganese-substitute · Magnetic properties · Mössbauer spectroscopy