

Magnetic, Mössbauer and hyperthermia properties of Co_{1-x}Mn_xFe₂O₄ nanoparticles

Sanghee Jung¹ · Jin Gyo Jung¹ · Hyunkyung Choi¹ · Minseon Kim¹ · In-Bo Shim¹ · Chul Sung Kim¹

Received: 20 January 2021 / Accepted: 21 May 2021 © Akadémiai Kiadó, Budapest, Hungary 2021

Abstract

Hyperthermia is used to combat and reduce the effects of tumors. This study relates to $Co_{1-x}Mn_xFe_2O_4$ magnetic nanoparticles and their potential in hyperthermia treatment applications. $Co_{1-x}Mn_xFe_2O_4$ nanoparticles were prepared using the high-temperature thermal decomposition method, and the cubic spinel structure with the *Fd-3m* space group was confirmed through X-ray diffraction analysis. The self-heating temperature was measured using a magneTherm device, and the Mössbauer spectrum covers six lines of sites A and B. Consequently, the composition, particle size, and frequency conditions of magnetic nanoparticles capable of generating self-heating temperatures near the cancer cell death temperature of 42–43 °C were established.

Keywords Hyperthermia · Manganese substituted cobalt · Mössbauer spectroscopy