JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998

Crystallization and Mössbauer studies of melt-spun NdFe $_{10.7}$ TiB $_{0.3}$ N $_{\delta}$ alloys

Chul Sung Kim, a) Sung Yong An, and Young Rang Uhm Department of Physics, Kookmin University, Seoul 136-702, Korea

Seung Wha Lee

School of Electrical and Electronics Engineering, Chungbuk National University, Cheongju 360-763, Korea

Y. B. Kim and C. S. Kim

Korea Research Institute of Standards Science, Taejon 305-606, Korea

Magnetic properties of melt-spun NdFe_{10.7}TiB_{0.3}N_δ ribbons have been investigated as functions of quenching rate and nitriding period. NdFe_{10.7}TiB_{0.3} were prepared with substrate velocity $v_s \le 18$ m/s and were nitrogenated at 500 °C for 15 min. The NdFe_{10.7}TiB_{0.3}N_δ retains the ThMn₁₂-type tetragonal structure with lattice constants $a_0 = 8.640$ Å and $c_0 = 4.811$ Å, but with an increase in the unit cell volume. The NdFe_{10.7}TiB_{0.3}N_δ was confirmed to have uniaxial anisotropy by x-ray diffraction. Mössbauer spectra were taken at various temperatures ranging from 13 to 855 K. The Curie and Debye temperatures are determined to be $T_c = 833$ K and Θ=390 K, respectively. Each spectrum below T_c was fitted with six subspectra of Fe sites (8 i_1 , 8 i_2 , 8 j_2 , 8 j_1 , 8f, and α-Fe). The area fraction of the subspectra at 13 K are 10.2%, 8.2%, 16.5%, 17.5%, 44.3%, and 3.3%, respectively. The magnetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i) > H_{hf}(8j) > H_{hf}(8f)$. © 1998 American Institute of Physics. [S0021-8979(98)22811-8]