Crystallization and Mössbauer Studies of the Fe₇₈Al₄Nb₅B₁₂Cu₁ Alloy

Chul Sung Kim*, Hi Min Lee and Sung Baek Kim

Department of Physics, Kookmin University, Seoul 136-702

J. Y. PARK and K. Y. KIM

Division of Metals, Korea Institute of Science and Technology, Seoul 136-791

Т. Н. Мон

Department of Metallurgical Engineering, Andong National University, Andong 760-749

Hang Nam Oak

Department of Physics, Yonsei University, Seoul 120-749

(Received 4 April 1998, in final form 27 July 1998)

A melt-spun $Fe_{78}Al_4Nb_5B_{12}Cu_1$ alloy with an ultra-thin ribbon has been studied by X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. The average hyperfine field $H_{hf}(T)$ of the amorphous state shows a temperature dependence of

$$[H_{hf}(T) - H_{hf}(0)]/H_{hf}(0) = -0.53(T/T_C)^{3/2} - 0.21(T/T_C)^{5/2}$$
 for $T/T_C < 0.7$,

indicative of spin-wave excitation. The quadrupole splitting just above the Curie temperature T_C is 0.42 mm/s, whereas the quadrupole shift below T_C is zero. The Curie and the crystallization temperatures are T_C =450 K and T_x = 703 K, respectively, for a heating rate of 5 K/min. The occupied area ratio of the α -Fe phase flash-annealed at 723 K is 59% and remains unchanged. The crystallization temperature of the flash-annealed alloy becomes lower, and the formation of an α -Fe is easier than that of the conventional alloy. The flash-annealing technique is effective in improving the high-frequency soft magnetic property of the nanocrystalline Fe₇₈Al₄Nb₅B₁₂Cu₁ alloy.