JOURNAL OF APPLIED PHYSICS VOLUME 87, NUMBER 9 1 MAY 2000

Mössbauer studies of BaFe_{11.9}Mn_{0.1}O₁₉ by a sol-gel method

Chul Sung Kim, a) Seung Wha Lee, b) and Sung Yong An Department of Physics, Kookmin University, Seoul 136-702, Korea

BaFe_{11.9}Mn_{0.1}O₁₉ powders were prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized by Mössbauer spectroscopy, x-ray diffractometry, and vibrating sample magnetometry. X-ray diffraction and Mössbauer measurements showed that the BaFe_{11.9}Mn_{0.1}O₁₉ had an *M*-type hexagonal structure with $a_0 = 5.900 \,\text{Å}$ and $c_0 = 23.219 \,\text{Å}$. Mössbauer spectroscopy was performed at various temperatures ranging from 13 to 800 K, and each spectrum for a temperature below the Curie temperature $(T_C = 775 \pm 5 \text{ K})$ was fitted with five subspectra of Fe sites in the structure $(4f_{VI}, 2a, 4f_{IV}, 12k, and 2b)$. The area fractions of the subspectra at 13 K were 18.0%, 10.2%, 17.5%, 46.1%, and 8.2%, respectively. The 2b site had a very large quadrupole splitting. The isomer shifts indicated that the valence state of the Fe ions was ferric (Fe³⁺). The saturation magnetization M_s was 58 emu/g, and coercivity H_c was 5141 Oe at room temperature under an applied field of 15 kOe. © 2000 American Institute of Physics. [S0021-8979(00)41008-X]