

Journal of Magnetism and Magnetic Materials 215-216 (2000) 40-42

www.elsevier.com/locate/jmmm

Mössbauer studies of CMR compound $La_{0.67}Ca_{0.33}Mn_{0.97}{}^{57}Fe_{0.03}O_3$

Chul Sung Kim^{a,*}, Seung-Iel Park^a, Young-Jei Oh^b

^aDepartment of Physics, Kookmin University, 861-1 Chongnung-dong, Songbuk-gu, Seoul 136-702, South Korea ^bThin Film Technology Research Center, Korea Institute of Science and Technology, Seoul 130-650, South Korea

Abstract

The perovskite $La_{0.67}Ca_{0.33}Mn_{0.97}$ ⁵⁷Fe_{0.03}O₃ compound has been prepared by sol-gel method. Colossal magnetoresistance and magnetic properties of $La_{0.67}Ca_{0.33}Mn_{0.97}$ ⁵⁷Fe_{0.03}O₃ has been studied using X-ray diffraction pattern, Rutherford back-scattering spectroscopy, Mössbauer spectroscopy and vibrating sample magnetometer. Crystalline $La_{0.67}Ca_{0.33}Mn_{0.97}$ ⁵⁷Fe_{0.03}O₃ was a cubic perovskite structure with a lattice parameter $a_0 = 3.859$ Å. Mössbauer spectra of $La_{0.67}Ca_{0.33}Mn_{0.97}$ ⁵⁷Fe_{0.03}O₃ have been taken at various temperatures ranging from 4.2 K to room temperature. Analysis of ⁵⁷Fe Mössbauer spectrum data has considered nearest-neighbor interactions and anisotropic hyperfine field fluctuation. Analysis of ⁵⁷Fe Mössbauer data in terms of the local configuration magnetization of $La_{0.67}Ca_{0.33}Mn_{0.97}$ ⁵⁷Fe_{0.03}O₃ is found to be 68 emu/g at 77 K. The Curie temperature, T_c , is determined to be 210 K. The temperature dependence of the resistance under zero and 10 kOe applied field shows that a semiconductor-metal transition, T_{SC-M} , occurs at 200 K. The relative magnetoresistance, MR, is about 45%. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Sol-gel; Colossal magnetoresistance; Mössbauer; Anisotropic hyperfine field fluctuation