

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 304 (2006) e772-e774

www.elsevier.com/locate/jmmm

Growth of multiferroics BiFeO₃ thin films by sol–gel method

Seung Wha Lee^a, Chul Sung Kim^{b,*}

^aDepartment of Electronic Engineering, Chungju National University, Chungju 380-702, Republic of Korea ^bDepartment of Physics, Kookmin University, Seoul 136-702, Republic of Korea

Available online 22 March 2006

Abstract

The growth of BiFeO₃ thin films were spin-coated onto Pt(111)/Ti/SiO₂/Si(100) substrates. The crystal structure of the BiFeO₃ annealed at 500 °C was determined to be rhombohedral of R3c space group with its lattice constants $a_0 = b_0 = 5.5728$ Å, $c_0 = 13.8412$ Å, respectively. The Bragg factors R_B and R_F were 8.79% and 4.85%, respectively. Scanning electron microscope (SEM) pictures revealed that the matrix is uniform and no segregation of impurity phase was detected. Auger electron spectroscopy (AES) analysis indicated that the sample is chemically homogeneous with Bi/Fe atomic percent ratio being close to 1. Images of atomic force microscopy (AFM) show that their root-mean squared and average values of the surface roughness of the film were 34.3 and 27.3 Å, respectively. The differential scanning calorimetry (DSC) curve indicates a phase transition at a temperature of 354 °C. The film shows well-saturated weak ferromagnetic hysteresis loop with maximum magnetic field of 10 kOe at room temperature.

PACS: 75.70.-i; 75.75.+a

Keywords: Multiferroics; BiFeO3 thin film; Sol-gel method